Abstract
The ability of yeasts to ferment cellodextrins is rare. Candida wickerhamii is able to use these sugars for alcohol production because of a cell-bound, extracellular, beta-glucosidase that is unusual by not being inhibited by glucose. A cDNA expression library in lambda phage was prepared with mRNA isolated from cellobiose-grown C. wickerhamii. Immunological screening of the library with polyclonal antibodies against purified C. wickerhamii cell-bound, extracellular beta-glucosidase yielded 12 positive clones. Restriction endonuclease analysis and sequence data revealed that the clones could be divided into two groups, bglA and bglB, which were shown to be genetically distinct by Southern hybridization analyses. Efforts were directed at the study of bglB since it appeared to code for the cell-bound beta-glucosidase. Sequence data from both cDNA and genomic clones showed the absence of introns in bglB. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting of cell lysates from Escherichia coli bglB clones confirmed the presence of an expressed protein with an apparent molecular mass of 72 kDa, which is consistent with that expected for an unglycosylated form of the enzyme. Amino acid comparisons of BglB with other beta-glucosidase sequences suggest that it is a member of family 1 glycosyl hydrolases but is unusual in that it contains an additional 100 to 130 amino acids at the N terminus. This sequence did not have homologies to other known protein sequences and may impart unique properties to this beta-glucosidase.
Full Text
The Full Text of this article is available as a PDF (465.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Breidt F., Jr, Stewart G. C. Nucleotide and deduced amino acid sequences of the Staphylococcus aureus phospho-beta-galactosidase gene. Appl Environ Microbiol. 1987 May;53(5):969–973. doi: 10.1128/aem.53.5.969-973.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Béguin P. Molecular biology of cellulose degradation. Annu Rev Microbiol. 1990;44:219–248. doi: 10.1146/annurev.mi.44.100190.001251. [DOI] [PubMed] [Google Scholar]
- De Bellis G., Manoni M., Pergolizzi R., Redolfi M. E., Lazzana M. A more stringent choice of primers can improve the performance of fluorescent automated DNA sequencers. Biotechniques. 1992 Dec;13(6):892-4, 897. [PubMed] [Google Scholar]
- Desrochers M., Jurasek L., Paice M. G. High Production of beta-Glucosidase in Schizophyllum commune: Isolation of the Enzyme and Effect of the Culture Filtrate on Cellulose Hydrolysis. Appl Environ Microbiol. 1981 Jan;41(1):222–228. doi: 10.1128/aem.41.1.222-228.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freer S. N., Detroy R. W. Regulation of beta-1, 4-Glucosidase Expression by Candida wickerhamii. Appl Environ Microbiol. 1985 Jul;50(1):152–159. doi: 10.1128/aem.50.1.152-159.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freer S. N. Fermentation and aerobic metabolism of cellodextrins by yeasts. Appl Environ Microbiol. 1991 Mar;57(3):655–659. doi: 10.1128/aem.57.3.655-659.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freer S. N., Greene R. V. Transport of glucose and cellobiose by Candida wickerhamii and Clavispora lusitaniae. J Biol Chem. 1990 Aug 5;265(22):12864–12868. [PubMed] [Google Scholar]
- Freer S. N. Kinetic characterization of a beta-glucosidase from a yeast, Candida wickerhamii. J Biol Chem. 1993 May 5;268(13):9337–9342. [PubMed] [Google Scholar]
- Freer S. N. Purification and characterization of the extracellular beta-glucosidase produced by Candida wickerhamii. Arch Biochem Biophys. 1985 Dec;243(2):515–522. doi: 10.1016/0003-9861(85)90528-4. [DOI] [PubMed] [Google Scholar]
- González-Candelas L., Ramón D., Polaina J. Sequences and homology analysis of two genes encoding beta-glucosidases from Bacillus polymyxa. Gene. 1990 Oct 30;95(1):31–38. doi: 10.1016/0378-1119(90)90410-s. [DOI] [PubMed] [Google Scholar]
- Gräbnitz F., Seiss M., Rücknagel K. P., Staudenbauer W. L. Structure of the beta-glucosidase gene bglA of Clostridium thermocellum. Sequence analysis reveals a superfamily of cellulases and beta-glycosidases including human lactase/phlorizin hydrolase. Eur J Biochem. 1991 Sep 1;200(2):301–309. doi: 10.1111/j.1432-1033.1991.tb16186.x. [DOI] [PubMed] [Google Scholar]
- Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Himmel M. E., Tucker M. P., Lastick S. M., Oh K. K., Fox J. W., Spindler D. D., Grohmann K. Isolation and characterization of a 1,4-beta-D-glucan glucohydrolase from the yeast, Torulopsis wickerhamii. J Biol Chem. 1986 Oct 5;261(28):12948–12955. [PubMed] [Google Scholar]
- Hughes M. A., Brown K., Pancoro A., Murray B. S., Oxtoby E., Hughes J. A molecular and biochemical analysis of the structure of the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Cranz). Arch Biochem Biophys. 1992 Jun;295(2):273–279. doi: 10.1016/0003-9861(92)90518-2. [DOI] [PubMed] [Google Scholar]
- Kempton J. B., Withers S. G. Mechanism of Agrobacterium beta-glucosidase: kinetic studies. Biochemistry. 1992 Oct 20;31(41):9961–9969. doi: 10.1021/bi00156a015. [DOI] [PubMed] [Google Scholar]
- Ladisch M. R., Hong J., Voloch M., Tsao G. T. Cellulase kinetics. Basic Life Sci. 1981;18:55–83. doi: 10.1007/978-1-4684-3980-9_5. [DOI] [PubMed] [Google Scholar]
- Little S., Cartwright P., Campbell C., Prenneta A., McChesney J., Mountain A., Robinson M. Nucleotide sequence of a thermostable beta-galactosidase from Sulfolobus solfataricus. Nucleic Acids Res. 1989 Oct 11;17(19):7980–7980. doi: 10.1093/nar/17.19.7980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Love D. R., Fisher R., Bergquist P. L. Sequence structure and expression of a cloned beta-glucosidase gene from an extreme thermophile. Mol Gen Genet. 1988 Jul;213(1):84–92. doi: 10.1007/BF00333402. [DOI] [PubMed] [Google Scholar]
- Mantei N., Villa M., Enzler T., Wacker H., Boll W., James P., Hunziker W., Semenza G. Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme. EMBO J. 1988 Sep;7(9):2705–2713. doi: 10.1002/j.1460-2075.1988.tb03124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Philippsen P., Stotz A., Scherf C. DNA of Saccharomyces cerevisiae. Methods Enzymol. 1991;194:169–182. doi: 10.1016/0076-6879(91)94014-4. [DOI] [PubMed] [Google Scholar]
- Schnetz K., Toloczyki C., Rak B. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol. 1987 Jun;169(6):2579–2590. doi: 10.1128/jb.169.6.2579-2590.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternberg D., Vijayakumar P., Reese E. T. beta-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol. 1977 Feb;23(2):139–147. doi: 10.1139/m77-020. [DOI] [PubMed] [Google Scholar]
- Trimbur D. E., Warren R. A., Withers S. G. Region-directed mutagenesis of residues surrounding the active site nucleophile in beta-glucosidase from Agrobacterium faecalis. J Biol Chem. 1992 May 25;267(15):10248–10251. [PubMed] [Google Scholar]
- Wakarchuk W. W., Greenberg N. M., Kilburn D. G., Miller R. C., Jr, Warren R. A. Structure and transcription analysis of the gene encoding a cellobiase from Agrobacterium sp. strain ATCC 21400. J Bacteriol. 1988 Jan;170(1):301–307. doi: 10.1128/jb.170.1.301-307.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Withers S. G., Rupitz K., Trimbur D., Warren R. A. Mechanistic consequences of mutation of the active site nucleophile Glu 358 in Agrobacterium beta-glucosidase. Biochemistry. 1992 Oct 20;31(41):9979–9985. doi: 10.1021/bi00156a017. [DOI] [PubMed] [Google Scholar]
- Wright R. M., Yablonsky M. D., Shalita Z. P., Goyal A. K., Eveleigh D. E. Cloning, characterization, and nucleotide sequence of a gene encoding Microbispora bispora BglB, a thermostable beta-glucosidase expressed in Escherichia coli. Appl Environ Microbiol. 1992 Nov;58(11):3455–3465. doi: 10.1128/aem.58.11.3455-3465.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el Hassouni M., Henrissat B., Chippaux M., Barras F. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans. J Bacteriol. 1992 Feb;174(3):765–777. doi: 10.1128/jb.174.3.765-777.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
