Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Feb;61(2):538–543. doi: 10.1128/aem.61.2.538-543.1995

Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei.

A Peñaloza-Vazquez 1, G L Mena 1, L Herrera-Estrella 1, A M Bailey 1
PMCID: PMC167315  PMID: 7574593

Abstract

Thirty-four strains of Pseudomonas pseudomallei isolated from soil were selected for their ability to degrade the phosphonate herbicide glyphosate. All strains tested were able to grow on glyphosate as the only phosphorus source without the addition of aromatic amino acids. One of these strains, P. pseudomallei 22, showed 50% glyphosate degradation in 40 h in glyphosate medium. From a genomic library of this strain constructed in pUC19, we have isolated a plasmid carrying a 3.0-kb DNA fragment which confers to E. coli the ability to use glyphosate as a phosphorus source. This 3.0-kb DNA fragment from P. pseudomallei contained two open reading frames (glpA and glpB) which are involved in glyphosate tolerance and in the modification of glyphosate to a substrate of the Escherichia coli carbon-phosphorus lyase. glpA exhibited significant homology with the E. coli hygromycin phosphotransferase gene. It was also found that the hygromycin phosphotransferase genes from both P. pseudomallei and E. coli confer tolerance to glyphosate.

Full Text

The Full Text of this article is available as a PDF (295.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balthazor T. M., Hallas L. E. Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol. 1986 Feb;51(2):432–434. doi: 10.1128/aem.51.2.432-434.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boocock M. R., Coggins J. R. Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett. 1983 Apr 5;154(1):127–133. doi: 10.1016/0014-5793(83)80888-6. [DOI] [PubMed] [Google Scholar]
  3. Fitzgibbon J. E., Braymer H. D. Cloning of a gene from Pseudomonas sp. strain PG2982 conferring increased glyphosate resistance. Appl Environ Microbiol. 1990 Nov;56(11):3382–3388. doi: 10.1128/aem.56.11.3382-3388.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gritz L., Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene. 1983 Nov;25(2-3):179–188. doi: 10.1016/0378-1119(83)90223-8. [DOI] [PubMed] [Google Scholar]
  5. Haas M. J., Dowding J. E. Aminoglycoside-modifying enzymes. Methods Enzymol. 1975;43:611–628. doi: 10.1016/0076-6879(75)43124-x. [DOI] [PubMed] [Google Scholar]
  6. Jacob G. S., Garbow J. R., Hallas L. E., Kimack N. M., Kishore G. M., Schaefer J. Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol. 1988 Dec;54(12):2953–2958. doi: 10.1128/aem.54.12.2953-2958.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaster K. R., Burgett S. G., Rao R. N., Ingolia T. D. Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing. Nucleic Acids Res. 1983 Oct 11;11(19):6895–6911. doi: 10.1093/nar/11.19.6895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kishore G. M., Jacob G. S. Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. J Biol Chem. 1987 Sep 5;262(25):12164–12168. [PubMed] [Google Scholar]
  9. Lee K. S., Metcalf W. W., Wanner B. L. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes. J Bacteriol. 1992 Apr;174(8):2501–2510. doi: 10.1128/jb.174.8.2501-2510.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Liu C-M, McLean P. A., Sookdeo C. C., Cannon F. C. Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae. Appl Environ Microbiol. 1991 Jun;57(6):1799–1804. doi: 10.1128/aem.57.6.1799-1804.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Metcalf W. W., Wanner B. L. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene. 1993 Jul 15;129(1):27–32. doi: 10.1016/0378-1119(93)90692-v. [DOI] [PubMed] [Google Scholar]
  12. Metcalf W. W., Wanner B. L. Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA' elements. J Bacteriol. 1993 Jun;175(11):3430–3442. doi: 10.1128/jb.175.11.3430-3442.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rogers S. G., Brand L. A., Holder S. B., Sharps E. S., Brackin M. J. Amplification of the aroA gene from Escherichia coli results in tolerance to the herbicide glyphosate. Appl Environ Microbiol. 1983 Jul;46(1):37–43. doi: 10.1128/aem.46.1.37-43.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rueppel M. L., Brightwell B. B., Schaefer J., Marvel J. T. Metabolism and degradation of glyphosphate in soil and water. J Agric Food Chem. 1977 May-Jun;25(3):517–528. doi: 10.1021/jf60211a018. [DOI] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zboińska E., Lejczak B., Kafarski P. Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens. Appl Environ Microbiol. 1992 Sep;58(9):2993–2999. doi: 10.1128/aem.58.9.2993-2999.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES