Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Feb;61(2):576–582. doi: 10.1128/aem.61.2.576-582.1995

Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis.

L L Jahnke 1, R E Summons 1, L M Dowling 1, K D Zahiralis 1
PMCID: PMC167321  PMID: 11536707

Abstract

A lipid analysis of the tissues of a cold-seep mytilid mussel collected from the Louisiana slope of the Gulf of Mexico was used in conjunction with a compound-specific isotope analysis to demonstrate the presence of methanotrophic symbionts in the mussel gill tissue and to demonstrate the host's dependence on bacterially synthesized metabolic intermediates. The gill tissue contained large amounts of group-specific methanotrophic biomarkers, bacteriohopanoids, 4-methylsterols, lipopolysaccharide-associated hydroxy fatty acids, and type I-specific 16:1 fatty acid isomers with bond positions at delta 8, delta 10, and delta 11. Only small amounts of these compounds were detected in the mantle or other tissues of the host animal. A variety of cholesterol and 4-methylsterol isomers were identified as both free and steryl esters, and the sterol double bond positions suggested that the major bacterially derived gill sterol [11.0% 4 alpha-methyl-cholesta-8(14),24-dien-3 beta-ol] was converted to host cholesterol (64.2% of the gill sterol was cholest-5-en-3 beta-ol). The stable carbon isotope values for gill and mantle preparations were, respectively, -59.0 and -60.4% for total tissue, -60.6 and -62.4% for total lipids, -60.2 and-63.9% for phospholipid fatty acids, and -71.8 and 73.8% for sterols. These stable carbon isotope values revealed that the relative fractionation pattern was similar to the patterns obtained in pure culture experiments with methanotrophic bacteria (R.E. Summons, L.L. Jahnke, and Z. Roksandic, Geochim. Cosmochim. Acta 58: 2853-2863, 1994) further supporting the conversion of the bacteria methylsterol pool.

Full Text

The Full Text of this article is available as a PDF (227.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bird C. W., Lynch J. M., Pirt F. J., Reid W. W. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature. 1971 Apr 16;230(5294):473–474. doi: 10.1038/230473a0. [DOI] [PubMed] [Google Scholar]
  3. Bloch K. E. Sterol structure and membrane function. CRC Crit Rev Biochem. 1983;14(1):47–92. doi: 10.3109/10409238309102790. [DOI] [PubMed] [Google Scholar]
  4. Bouvier P., Rohmer M., Benveniste P., Ourisson G. Delta8(14)-steroids in the bacterium Methylococcus capsulatus. Biochem J. 1976 Nov;159(2):267–271. doi: 10.1042/bj1590267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brooks J. M., Kennicutt M. C., 2nd, Fisher C. R., Macko S. A., Cole K., Childress J. J., Bidigare R. R., Vetter R. D. Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science. 1987 Nov 20;238(4830):1138–1142. doi: 10.1126/science.238.4830.1138. [DOI] [PubMed] [Google Scholar]
  6. Cary S. C., Fisher C. R., Felbeck H. Mussel growth supported by methane as sole carbon and energy source. Science. 1988 Apr 1;240(4848):78–80. doi: 10.1126/science.240.4848.78. [DOI] [PubMed] [Google Scholar]
  7. Childress J. J., Fisher C. R., Brooks J. M., Kennicutt M. C., 2nd, Bidigare R., Anderson A. E. A methanotrophic marine molluscan (bivalvia, mytilidae) symbiosis: mussels fueled by gas. Science. 1986 Sep 19;233(4770):1306–1308. doi: 10.1126/science.233.4770.1306. [DOI] [PubMed] [Google Scholar]
  8. DeNiro M. J., Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science. 1977 Jul 15;197(4300):261–263. doi: 10.1126/science.327543. [DOI] [PubMed] [Google Scholar]
  9. Distel D. L., Cavanaugh C. M. Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol. 1994 Apr;176(7):1932–1938. doi: 10.1128/jb.176.7.1932-1938.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  11. Fryberg M., Oehlschlager A. C., Unrau A. M. Biosynthesis of ergosterol in yeast. Evidence for multiple pathways. J Am Chem Soc. 1973 Aug 22;95(17):5747–5757. doi: 10.1021/ja00798a051. [DOI] [PubMed] [Google Scholar]
  12. Jahnke L. L., Diggs K. Evidence for the synthesis of the multi-positional isomers of monounsaturated fatty acid in Methylococcus capsusatus by the anaerobic pathway. FEMS Microbiol Lett. 1989;58:183–188. doi: 10.1111/j.1574-6968.1989.tb03041.x. [DOI] [PubMed] [Google Scholar]
  13. Jahnke L. L., Nichols P. D. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions. J Bacteriol. 1986 Jul;167(1):238–242. doi: 10.1128/jb.167.1.238-242.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jahnke L. L., Stan-Lotter H., Kato K., Hochstein L. I. Presence of methyl sterol and bacteriohopanepolyol in an outer-membrane preparation from Methylococcus capsulatus (Bath). J Gen Microbiol. 1992 Aug;138(8):1759–1766. doi: 10.1099/00221287-138-8-1759. [DOI] [PubMed] [Google Scholar]
  15. Jahnke L. L. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath). FEMS Microbiol Lett. 1992 Jun 15;72(3):209–212. doi: 10.1111/j.1574-6968.1992.tb05099.x. [DOI] [PubMed] [Google Scholar]
  16. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  17. Makula R. A. Phospholipid composition of methane-utilizing bacteria. J Bacteriol. 1978 Jun;134(3):771–777. doi: 10.1128/jb.134.3.771-777.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ourisson G., Rohmer M., Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol. 1987;41:301–333. doi: 10.1146/annurev.mi.41.100187.001505. [DOI] [PubMed] [Google Scholar]
  19. Patt T. E., Hanson R. S. Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. J Bacteriol. 1978 May;134(2):636–644. doi: 10.1128/jb.134.2.636-644.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rohmer M., Bouvier P., Ourisson G. Non-specific lanosterol and hopanoid biosynthesis be a cell-free system from the bacterium Methylococcus capsulatus. Eur J Biochem. 1980 Dec;112(3):557–560. doi: 10.1111/j.1432-1033.1980.tb06121.x. [DOI] [PubMed] [Google Scholar]
  21. Rohmer M., Knani M., Simonin P., Sutter B., Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993 Oct 15;295(Pt 2):517–524. doi: 10.1042/bj2950517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Summons R. E., Jahnke L. L. Identification of the methylhopanes in sediments and petroleum. Geochim Cosmochim Acta. 1990;54:247–251. doi: 10.1016/0016-7037(90)90212-4. [DOI] [PubMed] [Google Scholar]
  23. Summons R. E., Jahnke L. L., Roksandic Z. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta. 1994;58(13):2853–2863. doi: 10.1016/0016-7037(94)90119-8. [DOI] [PubMed] [Google Scholar]
  24. Zinser E., Paltauf F., Daum G. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol. 1993 May;175(10):2853–2858. doi: 10.1128/jb.175.10.2853-2858.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES