Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Feb;61(2):583–591. doi: 10.1128/aem.61.2.583-591.1995

Ruminal microbial digestion in free-living, in captive lichen-fed, and in starved reindeer (Rangifer tarandus tarandus) in winter.

T H Aagnes 1, W Sørmo 1, S D Mathiesen 1
PMCID: PMC167322  PMID: 7574599

Abstract

In free-living (FL) reindeer eating a natural mixed winter diet dominated by lichens, captive (CF) reindeer fed pure lichens ad libitum, and CF reindeer subsequently starved for 1 day (CS1 reindeer) or 4 days (CS4 reindeer), the dominant rumen anaerobic bacteria were characterized, their population densities were estimated, and ruminal pH and volatile fatty acid concentrations were determined. In the FL reindeer, the total median viable anaerobic bacterial population ranged from 18 x 10(8) to 35 x 10(8) cells per ml of rumen fluid (n = 4), compared with 26 x 10(8) to 34 x 10(8) and 0.09 x 10(8) to 0.1 x 10(8) cells per ml of rumen fluid in CF reindeer (n = 2) and CS4 reindeer (n = 2), respectively. The median bacterial population adhering to the rumen solids ranged from 260 x 10(8) to 450 x 10(8), 21 x 10(8) to 38 x 10(8), and 0.5 x 10(8) cells per g (wet weight) of rumen solids in FL, CF, and CS4 reindeer, respectively. Although there were variations in the rumen bacterial composition among the FL reindeer (n = 4), strains of Bacteroides, Fibrobacter, Streptococcus, and Clostridium dominated in the rumen fluid. Streptococcus spp. and Clostridium spp. were the dominant bacteria in the CF reindeer (n = 2), while in the CS4 reindeer (n = 2) the dominant bacteria were Fusobacterium spp., members of the family Enterobacteriaceae, and Eubacterium spp. Transmission electron micrographs of lichen particles from the rumen of one FL reindeer, one CF reindeer, and one CS4 reindeer show bacteria resembling Bacteroides spp. adhering to the lichen particles, evidently digesting the lichen hyphae from the inside.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (903.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akin D. E., Amos H. E. Rumen bacterial degradation of forage cell walls investigated by electron microscopy. Appl Microbiol. 1975 May;29(5):692–701. doi: 10.1128/am.29.5.692-701.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARROLL E. J., HUNGATE R. E. The magnitude of the microbial fermentation in the bovine rumen. Appl Microbiol. 1954 Jul;2(4):205–214. doi: 10.1128/am.2.4.205-214.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Costerton J. W., Geesey G. G., Cheng K. J. How bacteria stick. Sci Am. 1978 Jan;238(1):86–95. doi: 10.1038/scientificamerican0178-86. [DOI] [PubMed] [Google Scholar]
  4. DOUGHERTY R. W. Permanent stomach and intestinal fistulas in ruminants: some modifications and simplifications. Cornell Vet. 1955 Jul;45(3):331–357. [PubMed] [Google Scholar]
  5. Dehority B. A., Grubb J. A. Basal medium for the selective enumeration of rumen bacteria utilizing specific energy sources. Appl Environ Microbiol. 1976 Nov;32(5):703–710. doi: 10.1128/aem.32.5.703-710.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HUNGATE R. E., MAH R. A., SIMESEN M. Rates of production of individual volatile fatty acids in the rumen of lactating cows. Appl Microbiol. 1961 Nov;9:554–561. doi: 10.1128/am.9.6.554-561.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUNGATE R. E. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev. 1950 Mar;14(1):1–49. doi: 10.1128/br.14.1.1-49.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kudo H., Cheng K. J., Costerton J. W. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can J Microbiol. 1987 Mar;33(3):267–272. doi: 10.1139/m87-045. [DOI] [PubMed] [Google Scholar]
  9. Leedle J. A., Bryant M. P., Hespell R. B. Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low- or high-forage diets. Appl Environ Microbiol. 1982 Aug;44(2):402–412. doi: 10.1128/aem.44.2.402-412.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Olsen M. A., Aagnes T. H., Mathiesen S. D. Digestion of herring by indigenous bacteria in the minke whale forestomach. Appl Environ Microbiol. 1994 Dec;60(12):4445–4455. doi: 10.1128/aem.60.12.4445-4455.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Orpin C. G., Greenwood Y., Hall F. J., Paterson I. W. The rumen microbiology of seaweed digestion in Orkney sheep. J Appl Bacteriol. 1985 Jun;58(6):585–596. doi: 10.1111/j.1365-2672.1985.tb01715.x. [DOI] [PubMed] [Google Scholar]
  12. Orpin C. G., Mathiesen S. D., Greenwood Y., Blix A. S. Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl Environ Microbiol. 1985 Jul;50(1):144–151. doi: 10.1128/aem.50.1.144-151.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Teather R. M., Wood P. J. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982 Apr;43(4):777–780. doi: 10.1128/aem.43.4.777-780.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES