Abstract
Cecal homogenates were assayed for the enzymes beta-glucosidase, beta-glucuronidase, and beta-galactosidase. Anaerobic incubation with the addition of excess 3,4-dichloronitrobenzene, a substrate for nitroreductase, significantly increased the detection of the beta-glycosidase enzymes' activities.
Full Text
The Full Text of this article is available as a PDF (160.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bokkenheuser V. D., Shackleton C. H., Winter J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem J. 1987 Dec 15;248(3):953–956. doi: 10.1042/bj2480953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celik C., Lewis D. A., Mittleman A. Induction of colon mucosal beta-glucuronidase production as a mechanism for 1,2-dimethylhydrazine colon carcinogenesis. J Surg Oncol. 1983 Nov;24(3):209–211. doi: 10.1002/jso.2930240313. [DOI] [PubMed] [Google Scholar]
- Chadwick R. W., George S. E., Claxton L. D. Role of the gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens or carcinogens. Drug Metab Rev. 1992;24(4):425–492. doi: 10.3109/03602539208996302. [DOI] [PubMed] [Google Scholar]
- Goldin B. R. In situ bacterial metabolism and colon mutagens. Annu Rev Microbiol. 1986;40:367–393. doi: 10.1146/annurev.mi.40.100186.002055. [DOI] [PubMed] [Google Scholar]
- Hawksworth G., Drasar B. S., Hill M. J. Intestinal bacteria and the hydrolysis of glycosidic bonds. J Med Microbiol. 1971 Nov;4(4):451–459. doi: 10.1099/00222615-4-4-451. [DOI] [PubMed] [Google Scholar]
- MacDonald I. A., Bussard R. G., Hutchison D. M., Holdeman L. V. Rutin-induced beta-glucosidase activity in Streptococcus faecium VGH-1 and Streptococcus sp. strain FRP-17 isolated from human feces: formation of the mutagen, quercetin, from rutin. Appl Environ Microbiol. 1984 Feb;47(2):350–355. doi: 10.1128/aem.47.2.350-355.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mason R. P., Holtzman J. L. The role of catalytic superoxide formation in the O2 inhibition of nitroreductase. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1267–1274. doi: 10.1016/0006-291x(75)90163-1. [DOI] [PubMed] [Google Scholar]
- Morotomi M., Nanno M., Watanabe T., Sakurai T., Mutai M. Mutagenic activation of biliary metabolites of 1-nitropyrene by intestinal microflora. Mutat Res. 1985 Apr;149(2):171–178. doi: 10.1016/0027-5107(85)90023-5. [DOI] [PubMed] [Google Scholar]
- Rowland I. R., Wise A., Mallett A. K. Metabolic profile of caecal micro-organisms from rats fed indigestible plant cell-wall components. Food Chem Toxicol. 1983 Feb;21(1):25–29. doi: 10.1016/0278-6915(83)90264-8. [DOI] [PubMed] [Google Scholar]
- Sarhan H. R., Foster H. A. A rapid fluorogenic method for the detection of Escherichia coli by the production of beta-glucuronidase. J Appl Bacteriol. 1991 May;70(5):394–400. doi: 10.1111/j.1365-2672.1991.tb02955.x. [DOI] [PubMed] [Google Scholar]
- Schulze J., Herzog R., Müller-Beuthow W., Grütte F. K. Intestinale beta-Galactosidase-Aktivität im gnotobiotischen Tier nachMonoassoziation mit verschiedenen E. coli-Stämmen. Nahrung. 1987;31(5-6):625–629. doi: 10.1002/food.19870310582. [DOI] [PubMed] [Google Scholar]
- Weisburger J. H., Grantham P. H., Horton R. E., Weisburger E. K. Metabolism of the carcinogen N-hydroxy-N-2-fluorenylacetamide in germ-free rats. Biochem Pharmacol. 1970 Jan;19(1):151–162. doi: 10.1016/0006-2952(70)90336-9. [DOI] [PubMed] [Google Scholar]
- Williams J. R., Jr, Grantham P. H., Marsh H. H., 3rd, Weisburger J. H., Weisburger E. K. Participation of liver fractions and of intestinal bacteria in the metabolism of N-hydroxy-N-2-fluorenylacetamide in the rat. Biochem Pharmacol. 1970 Jan;19(1):173–188. doi: 10.1016/0006-2952(70)90338-2. [DOI] [PubMed] [Google Scholar]
