Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Mar;61(3):872–876. doi: 10.1128/aem.61.3.872-876.1995

Laccase component of the Ceriporiopsis subvermispora lignin-degrading system.

Y Fukushima 1, T K Kirk 1
PMCID: PMC167352  PMID: 7793921

Abstract

Laccase activity in the lignin-degrading fungus Ceriporiopsis subvermispora was associated with several proteins in the broth of cultures grown in a defined medium. Activity was not increased significantly by adding 2,5-xylidine or supplemental copper to the medium. Higher activity, associated with two major isoenzymes, developed in cultures grown on a wheat bran medium. These two isoenzymes were purified to homogeneity. L1 and L2 had isoelectric points of 3.4 and 4.8, molecular masses of 71 and 68 kDa, and approximate carbohydrate contents of 15 and 10%, respectively. Data indicated 4 copper atoms per mol. L1 and L2 had overlapping pH optima in the range of 3 to 5, depending on the substrate, and exhibited half-lives of 120 and 50 min at 60 degrees C. They were strongly inhibited by sodium azide and thioglycolic acid but not by hydroxylamine or EDTA. The isoenzymes oxidized 1,2,4,5-tetramethoxybenzene but not other methoxybenzene congeners. A variety of usual laccase substrates, including lignin-related phenols and ABTS [2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)], were also oxidized. Kinetic parameters were similar to those of the laccases of Coriolus versicolor. The N-terminal amino acid sequence (20 residues for L1) showed significant homology to those of laccases of other white rot basidiomycetes but not to those of the laccases of Agaricus bisporus or Neurospora crassa.

Full Text

The Full Text of this article is available as a PDF (223.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROMAN L., MALMSTROM B. G., AASA R., VANNGARD T. Quantitative electron spin resonance studies on native and denatured ceruloplasmin and laccase. J Mol Biol. 1962 Sep;5:301–310. doi: 10.1016/s0022-2836(62)80074-6. [DOI] [PubMed] [Google Scholar]
  2. Bollag J. M., Leonowicz A. Comparative studies of extracellular fungal laccases. Appl Environ Microbiol. 1984 Oct;48(4):849–854. doi: 10.1128/aem.48.4.849-854.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourbonnais R., Paice M. G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990 Jul 2;267(1):99–102. doi: 10.1016/0014-5793(90)80298-w. [DOI] [PubMed] [Google Scholar]
  4. Fåhraeus G., Reinhammar B. Large scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A. Acta Chem Scand. 1967;21(9):2367–2378. doi: 10.3891/acta.chem.scand.21-2367. [DOI] [PubMed] [Google Scholar]
  5. Germann U. A., Müller G., Hunziker P. E., Lerch K. Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. J Biol Chem. 1988 Jan 15;263(2):885–896. [PubMed] [Google Scholar]
  6. Hanna P. M., McMillin D. R., Pasenkiewicz-Gierula M., Antholine W. E., Reinhammar B. Type 2-depleted fungal laccase. Biochem J. 1988 Jul 15;253(2):561–568. doi: 10.1042/bj2530561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kersten P. J., Kalyanaraman B., Hammel K. E., Reinhammar B., Kirk T. K. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J. 1990 Jun 1;268(2):475–480. doi: 10.1042/bj2680475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kirk T. K., Harkin J. M., Cowling E. B. Oxidation of guaiacyl- and veratryl-glycerol-beta-gualacyl ether by Polyporus versicolor and Stereum frustulatum. Biochim Biophys Acta. 1968 Aug 6;165(1):134–144. doi: 10.1016/0304-4165(68)90198-0. [DOI] [PubMed] [Google Scholar]
  9. Kojima Y., Tsukuda Y., Kawai Y., Tsukamoto A., Sugiura J., Sakaino M., Kita Y. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem. 1990 Sep 5;265(25):15224–15230. [PubMed] [Google Scholar]
  10. Leisola M. S., Kozulic B., Meussdoerffer F., Fiechter A. Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J Biol Chem. 1987 Jan 5;262(1):419–424. [PubMed] [Google Scholar]
  11. Lobos S., Larraín J., Salas L., Cullen D., Vicuña R. Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology. 1994 Oct;140(Pt 10):2691–2698. doi: 10.1099/00221287-140-10-2691. [DOI] [PubMed] [Google Scholar]
  12. Malkin R., Malmström B. G., Vänngård T. The reversible removal of one specific copper(II) from fungal laccase. Eur J Biochem. 1969 Jan;7(2):253–259. doi: 10.1111/j.1432-1033.1969.tb19600.x. [DOI] [PubMed] [Google Scholar]
  13. Mort A. J., Lamport D. T. Anhydrous hydrogen fluoride deglycosylates glycoproteins. Anal Biochem. 1977 Oct;82(2):289–309. doi: 10.1016/0003-2697(77)90165-8. [DOI] [PubMed] [Google Scholar]
  14. Niku-Paavola M. L., Karhunen E., Salola P., Raunio V. Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J. 1988 Sep 15;254(3):877–883. doi: 10.1042/bj2540877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perry C. R., Matcham S. E., Wood D. A., Thurston C. F. The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol. 1993 Jan;139(1):171–178. doi: 10.1099/00221287-139-1-171. [DOI] [PubMed] [Google Scholar]
  16. Rüttimann-Johnson C., Salas L., Vicuña R., Kirk T. K. Extracellular Enzyme Production and Synthetic Lignin Mineralization by Ceriporiopsis subvermispora. Appl Environ Microbiol. 1993 Jun;59(6):1792–1797. doi: 10.1128/aem.59.6.1792-1797.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES