Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Mar;61(3):992–997. doi: 10.1128/aem.61.3.992-997.1995

Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces.

C K Bower 1, J McGuire 1, M A Daeschel 1
PMCID: PMC167359  PMID: 7793927

Abstract

Nisin is an antimicrobial peptide proven to be an effective inhibitor of gram-positive bacteria. It is known that nisin can adsorb to various surfaces and still retain much of its original activity (M. A. Daeschel, J. McGuire, and H. Al-Makhlafi, J. Food Prot. 55:731-735, 1992). In this study, nisin films were allowed to form on silanized silica surfaces and then exposed to medium containing Listeria monocytogenes. Representative areas were selected from each surface, and images of resident listeriae were obtained at 4-h intervals for 12 h. During this time, cells on surfaces that had been in contact with a high concentration of nisin (1.0 mg/ml) exhibited no signs of growth and many displayed evidence of cellular deterioration. Surfaces treated with a lower concentration of nisin (0.1 mg/ml) had a smaller degree of inhibition. In contrast, both protein-free surfaces and those with films of heat-inactivated nisin allowed attached L. monocytogenes cells to grow and reproduce. These studies, when repeated with a nisin-resistant strain of L. monocytogenes, resulted in no inhibition of growth on surfaces with adsorbed nisin. The bactericidal effect of adsorbed nisin was also studied with iodonitrotetrazolium violet, a tetrazolium salt, which is reduced to a red formazan crystal by viable bacteria. Crystals were visible in 95% of the cells adhered to control surfaces but were present in less than 20% of the cells on surfaces with adsorbed nisin. These data indicate that adsorbed nisin may have potential for use as a food grade antimicrobial agent on food contact surfaces.

Full Text

The Full Text of this article is available as a PDF (348.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Absolom D. R., Lamberti F. V., Policova Z., Zingg W., van Oss C. J., Neumann A. W. Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol. 1983 Jul;46(1):90–97. doi: 10.1128/aem.46.1.90-97.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benkerroum N., Sandine W. E. Inhibitory action of nisin against Listeria monocytogenes. J Dairy Sci. 1988 Dec;71(12):3237–3245. doi: 10.3168/jds.S0022-0302(88)79929-4. [DOI] [PubMed] [Google Scholar]
  3. Bruno M. E., Kaiser A., Montville T. J. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl Environ Microbiol. 1992 Jul;58(7):2255–2259. doi: 10.1128/aem.58.7.2255-2259.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Busscher H. J., Weerkamp A. H., van der Mei H. C., van Pelt A. W., de Jong H. P., Arends J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol. 1984 Nov;48(5):980–983. doi: 10.1128/aem.48.5.980-983.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conner D. E., Brackett R. E., Beuchat L. R. Effect of temperature, sodium chloride, and pH on growth of Listeria monocytogenes in cabbage juice. Appl Environ Microbiol. 1986 Jul;52(1):59–63. doi: 10.1128/aem.52.1.59-63.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cowell N. D., Allen A. R., Jarvis B. The in vivo effect of nisin on the microflora of the oral cavity. J Appl Bacteriol. 1971 Dec;34(4):787–791. doi: 10.1111/j.1365-2672.1971.tb01016.x. [DOI] [PubMed] [Google Scholar]
  7. Daeschel M. A., Jung D. S., Watson B. T. Controlling Wine Malolactic Fermentation with Nisin and Nisin-Resistant Strains of Leuconostoc oenos. Appl Environ Microbiol. 1991 Feb;57(2):601–603. doi: 10.1128/aem.57.2.601-603.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dickson J. S., Koohmaraie M. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environ Microbiol. 1989 Apr;55(4):832–836. doi: 10.1128/aem.55.4.832-836.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fleming D. W., Cochi S. L., MacDonald K. L., Brondum J., Hayes P. S., Plikaytis B. D., Holmes M. B., Audurier A., Broome C. V., Reingold A. L. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N Engl J Med. 1985 Feb 14;312(7):404–407. doi: 10.1056/NEJM198502143120704. [DOI] [PubMed] [Google Scholar]
  10. Gao F. H., Abee T., Konings W. N. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl Environ Microbiol. 1991 Aug;57(8):2164–2170. doi: 10.1128/aem.57.8.2164-2170.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gellin B. G., Broome C. V. Listeriosis. JAMA. 1989 Mar 3;261(9):1313–1320. [PubMed] [Google Scholar]
  12. Heinemann B., Williams R. Inactivation of nisin by pancreatin. J Dairy Sci. 1966 Mar;49(3):312–314. doi: 10.3168/jds.S0022-0302(66)87854-2. [DOI] [PubMed] [Google Scholar]
  13. Jarvis B., Mahoney R. R. Inactivation of nisin by alpha-chymotrypsin. J Dairy Sci. 1969 Sep;52(9):1448–1449. doi: 10.3168/jds.S0022-0302(69)86771-8. [DOI] [PubMed] [Google Scholar]
  14. Jung D. S., Bodyfelt F. W., Daeschel M. A. Influence of fat and emulsifiers on the efficacy of nisin in inhibiting Listeria monocytogenes in fluid milk. J Dairy Sci. 1992 Feb;75(2):387–393. doi: 10.3168/jds.S0022-0302(92)77773-X. [DOI] [PubMed] [Google Scholar]
  15. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  16. LeChevallier M. W., Cawthon C. D., Lee R. G. Inactivation of biofilm bacteria. Appl Environ Microbiol. 1988 Oct;54(10):2492–2499. doi: 10.1128/aem.54.10.2492-2499.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu W., Hansen J. N. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl Environ Microbiol. 1990 Aug;56(8):2551–2558. doi: 10.1128/aem.56.8.2551-2558.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ruhr E., Sahl H. G. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother. 1985 May;27(5):841–845. doi: 10.1128/aac.27.5.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Samuelsson M. O., Kirchman D. L. Degradation of adsorbed protein by attached bacteria in relationship to surface hydrophobicity. Appl Environ Microbiol. 1990 Dec;56(12):3643–3648. doi: 10.1128/aem.56.12.3643-3648.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wilkins P. O., Bourgeois R., Murray R. G. Psychrotrophic properties of Listeria monocytogenes. Can J Microbiol. 1972 May;18(5):543–551. doi: 10.1139/m72-087. [DOI] [PubMed] [Google Scholar]
  21. Zimmermann R., Iturriaga R., Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 1978 Dec;36(6):926–935. doi: 10.1128/aem.36.6.926-935.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES