Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Mar;61(3):1104–1109. doi: 10.1128/aem.61.3.1104-1109.1995

PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains.

S Yamamoto 1, S Harayama 1
PMCID: PMC167365  PMID: 7793912

Abstract

Degenerate PCR primers, UP-1 and UP-2r, for the amplification of DNA gyrase subunit B genes (gyrB) were designed by using consensus amino acid sequences of gyrases from Escherichia coli, Pseudomonas putida, and Bacillus subtilis. In addition to the degenerate sequences, these primers have sequences at the 5' end which allow direct sequencing of amplified PCR products. With these primers, DNA segments of the predicted size were amplified from a variety of gram-negative and gram-positive genera. The nucleotide sequences of the amplified gyrB DNA from three P. putida strains were determined directly from the amplified fragments. The base substitution frequency of gyrB between the strains of P. putida was much higher than that of the 16S rRNA gene. With a specific set of PCR primers, it was possible to amplify gyrB fragments selectively from P. putida or its subgroups. The direct sequencing method of gyrB developed in this study provides a rapid and convenient system for bacterial identification, taxonomic analysis, and monitoring of bacteria in the natural environment.

Full Text

The Full Text of this article is available as a PDF (404.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R., Springer N., Ludwig W., Görtz H. D., Schleifer K. H. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature. 1991 May 9;351(6322):161–164. doi: 10.1038/351161a0. [DOI] [PubMed] [Google Scholar]
  2. Bej A. K., Mahbubani M. H., Dicesare J. L., Atlas R. M. Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl Environ Microbiol. 1991 Dec;57(12):3529–3534. doi: 10.1128/aem.57.12.3529-3534.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burgess J. G., Kawaguchi R., Sakaguchi T., Thornhill R. H., Matsunaga T. Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rDNA sequences. J Bacteriol. 1993 Oct;175(20):6689–6694. doi: 10.1128/jb.175.20.6689-6694.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dams E., Hendriks L., Van de Peer Y., Neefs J. M., Smits G., Vandenbempt I., De Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 1988;16 (Suppl):r87–173. doi: 10.1093/nar/16.suppl.r87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
  6. Doyle J. D., Short K. A., Stotzky G., King R. J., Seidler R. J., Olsen R. H. Ecologically significant effects of Pseudomonas putida PPO301(pRO103), genetically engineered to degrade 2,4-dichlorophenoxyacetate, on microbial populations and processes in soil. Can J Microbiol. 1991 Sep;37(9):682–691. doi: 10.1139/m91-116. [DOI] [PubMed] [Google Scholar]
  7. Duncan A. J., Carman R. J., Olsen G. J., Wilson K. H. Assignment of the agent of Tyzzer's disease to Clostridium piliforme comb. nov. on the basis of 16S rRNA sequence analysis. Int J Syst Bacteriol. 1993 Apr;43(2):314–318. doi: 10.1099/00207713-43-2-314. [DOI] [PubMed] [Google Scholar]
  8. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989 Oct 11;17(19):7843–7853. doi: 10.1093/nar/17.19.7843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J. The phylogeny of prokaryotes. Science. 1980 Jul 25;209(4455):457–463. doi: 10.1126/science.6771870. [DOI] [PubMed] [Google Scholar]
  10. Fox G. E., Wisotzkey J. D., Jurtshuk P., Jr How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol. 1992 Jan;42(1):166–170. doi: 10.1099/00207713-42-1-166. [DOI] [PubMed] [Google Scholar]
  11. Furrer B., Candrian U., Hoefelein C., Luethy J. Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol. 1991 May;70(5):372–379. doi: 10.1111/j.1365-2672.1991.tb02951.x. [DOI] [PubMed] [Google Scholar]
  12. Hahn D., Amann R. I., Ludwig W., Akkermans A. D., Schleifer K. H. Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol. 1992 May;138(5):879–887. doi: 10.1099/00221287-138-5-879. [DOI] [PubMed] [Google Scholar]
  13. Herrick J. B., Madsen E. L., Batt C. A., Ghiorse W. C. Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl Environ Microbiol. 1993 Mar;59(3):687–694. doi: 10.1128/aem.59.3.687-694.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hillis D. M., Dixon M. T. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol. 1991 Dec;66(4):411–453. doi: 10.1086/417338. [DOI] [PubMed] [Google Scholar]
  15. Holben William E., Jansson Janet K., Chelm Barry K., Tiedje James M. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Appl Environ Microbiol. 1988 Mar;54(3):703–711. doi: 10.1128/aem.54.3.703-711.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jurtshuk R. J., Blick M., Bresser J., Fox G. E., Jurtshuk P., Jr Rapid in situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related gram-positive organisms Bacillus polymyxa and Bacillus macerans. Appl Environ Microbiol. 1992 Aug;58(8):2571–2578. doi: 10.1128/aem.58.8.2571-2578.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kapperud G., Vardund T., Skjerve E., Hornes E., Michaelsen T. E. Detection of pathogenic Yersinia enterocolitica in foods and water by immunomagnetic separation, nested polymerase chain reactions, and colorimetric detection of amplified DNA. Appl Environ Microbiol. 1993 Sep;59(9):2938–2944. doi: 10.1128/aem.59.9.2938-2944.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lampel K. A., Jagow J. A., Trucksess M., Hill W. E. Polymerase chain reaction for detection of invasive Shigella flexneri in food. Appl Environ Microbiol. 1990 Jun;56(6):1536–1540. doi: 10.1128/aem.56.6.1536-1540.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mahbubani M. H., Bej A. K., Miller R., Haff L., DiCesare J., Atlas R. M. Detection of Legionella with polymerase chain reaction and gene probe methods. Mol Cell Probes. 1990 Jun;4(3):175–187. doi: 10.1016/0890-8508(90)90051-z. [DOI] [PubMed] [Google Scholar]
  20. Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
  21. Ochman H., Wilson A. C. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26(1-2):74–86. doi: 10.1007/BF02111283. [DOI] [PubMed] [Google Scholar]
  22. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Picard C., Ponsonnet C., Paget E., Nesme X., Simonet P. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol. 1992 Sep;58(9):2717–2722. doi: 10.1128/aem.58.9.2717-2722.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Read S. C., Clarke R. C., Martin A., De Grandis S. A., Hii J., McEwen S., Gyles C. L. Polymerase chain reaction for detection of verocytotoxigenic Escherichia coli isolated from animal and food sources. Mol Cell Probes. 1992 Apr;6(2):153–161. doi: 10.1016/0890-8508(92)90060-b. [DOI] [PubMed] [Google Scholar]
  25. Tsai Y. L., Olson B. H. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl Environ Microbiol. 1992 Feb;58(2):754–757. doi: 10.1128/aem.58.2.754-757.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wallner G., Amann R., Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14(2):136–143. doi: 10.1002/cyto.990140205. [DOI] [PubMed] [Google Scholar]
  27. Way J. S., Josephson K. L., Pillai S. D., Abbaszadegan M., Gerba C. P., Pepper I. L. Specific detection of Salmonella spp. by multiplex polymerase chain reaction. Appl Environ Microbiol. 1993 May;59(5):1473–1479. doi: 10.1128/aem.59.5.1473-1479.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wegmüller B., Lüthy J., Candrian U. Direct polymerase chain reaction detection of Campylobacter jejuni and Campylobacter coli in raw milk and dairy products. Appl Environ Microbiol. 1993 Jul;59(7):2161–2165. doi: 10.1128/aem.59.7.2161-2165.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamagishi J., Yoshida H., Yamayoshi M., Nakamura S. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Mol Gen Genet. 1986 Sep;204(3):367–373. doi: 10.1007/BF00331012. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES