Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Mar;61(3):1141–1143. doi: 10.1128/aem.61.3.1141-1143.1995

Comparison of methods of DNA extraction from stream sediments.

L G Leff 1, J R Dana 1, J V McArthur 1, L J Shimkets 1
PMCID: PMC167368  PMID: 7793915

Abstract

In Upper Three Runs Creek (Aiken, S.C.) and many other environments, less than 1% of bacteria visible microscopically can be cultured. Exploitation of molecular biology techniques has led to development of new methods, such as extraction of nucleic acids from soils or sediments, to study the dominant, nonculturable bacteria. The purpose of this study was to compare three published methods of DNA extraction that fall into two general categories: those in which cells are lysed in sediments (the Ogram and Tsai and methods [A. Ogram, G. S. Sayler, and T. Barkay, J. Microbiol. Methods 7:57-66, 1987; Y. L. Tsai and B. H. Olson, Appl. Environ. Microbiol. 57:1070-1074, 1991]) and those in which cells are removed from sediments prior to lysis (the Jacobsen method [C. S. Jacobsen and O. S. Rasmussen; Appl. Environ. Microbiol. 58:2458-2462, 1992]). DNA yield varied with extraction method; the Ogram method had a significantly higher yield than the other methods. However, DNA extracted via the Ogram method was badly sheared and contained a smaller proportion of eubacterial DNA. The Tsai method was less time consuming than the other methods, but DNA samples were of lower purity. If DNA purity is of paramount concern (as would be the case if PCR was to be performed) and quantity is not important, the Jacobsen method is recommended because of the low concentration of contaminants. If DNA is to be used directly in DNA-DNA hybridizations, the Ogram method is recommended since it gives maximal yields.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (191.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988 Feb;170(2):720–726. doi: 10.1128/jb.170.2.720-726.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Holben William E., Jansson Janet K., Chelm Barry K., Tiedje James M. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Appl Environ Microbiol. 1988 Mar;54(3):703–711. doi: 10.1128/aem.54.3.703-711.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jacobsen C. S., Rasmussen O. F. Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol. 1992 Aug;58(8):2458–2462. doi: 10.1128/aem.58.8.2458-2462.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Moran M. A., Torsvik V. L., Torsvik T., Hodson R. E. Direct extraction and purification of rRNA for ecological studies. Appl Environ Microbiol. 1993 Mar;59(3):915–918. doi: 10.1128/aem.59.3.915-918.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Paul J. H., Myers B. Fluorometric determination of DNA in aquatic microorganisms by use of hoechst 33258. Appl Environ Microbiol. 1982 Jun;43(6):1393–1399. doi: 10.1128/aem.43.6.1393-1399.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sayler G. S., Layton A. C. Environmental application of nucleic acid hybridization. Annu Rev Microbiol. 1990;44:625–648. doi: 10.1146/annurev.mi.44.100190.003205. [DOI] [PubMed] [Google Scholar]
  9. Steffan R. J., Goksøyr J., Bej A. K., Atlas R. M. Recovery of DNA from soils and sediments. Appl Environ Microbiol. 1988 Dec;54(12):2908–2915. doi: 10.1128/aem.54.12.2908-2915.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tsai Y. L., Olson B. H. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol. 1991 Apr;57(4):1070–1074. doi: 10.1128/aem.57.4.1070-1074.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES