Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1220–1225. doi: 10.1128/aem.61.4.1220-1225.1995

Protein aggregation kinetics in an Escherichia coli strain overexpressing a Salmonella typhimurium CheY mutant gene.

J Klein 1, P Dhurjati 1
PMCID: PMC167376  PMID: 7747944

Abstract

The tendency of recombinant protein in bacteria to partition into soluble and insoluble forms is attributed, in general, to a kinetic competition between protein folding and aggregation. However, little experimental work has actually been performed in vivo on the kinetics and mechanisms of protein folding and aggregation. Results are presented here from radiolabeling experiments which monitored the kinetics of recombinant protein aggregation in actively growing cultures. The strain used was an Escherichia coli strain overexpressing a Salmonella typhimurium CheY mutant gene. The rate of CheY aggregation was found to be time dependent in that the tendency of CheY to aggregate was greater for newly translated molecules, i.e., those translated within the previous several minutes, than for molecules translated less recently. CheY protein molecules that were translated less recently continued to aggregate for several hours but at a lower rate. The movement of soluble CheY to the insoluble form was enhanced at elevated growth temperatures and inhibited by the presence of chloramphenicol. The latter observation suggests that ongoing translation facilitates the movement of soluble CheY to the insoluble form. The implications of these results for the mechanism of protein aggregation in vivo, i.e., inclusion body formation, are discussed.

Full Text

The Full Text of this article is available as a PDF (214.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blum P., Velligan M., Lin N., Matin A. DnaK-mediated alterations in human growth hormone protein inclusion bodies. Biotechnology (N Y) 1992 Mar;10(3):301–304. doi: 10.1038/nbt0392-301. [DOI] [PubMed] [Google Scholar]
  2. Bochkareva E. S., Lissin N. M., Girshovich A. S. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature. 1988 Nov 17;336(6196):254–257. doi: 10.1038/336254a0. [DOI] [PubMed] [Google Scholar]
  3. Brems D. N., Plaisted S. M., Kauffman E. W., Havel H. A. Characterization of an associated equilibrium folding intermediate of bovine growth hormone. Biochemistry. 1986 Oct 21;25(21):6539–6543. doi: 10.1021/bi00369a030. [DOI] [PubMed] [Google Scholar]
  4. Buchner J., Schmidt M., Fuchs M., Jaenicke R., Rudolph R., Schmid F. X., Kiefhaber T. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry. 1991 Feb 12;30(6):1586–1591. doi: 10.1021/bi00220a020. [DOI] [PubMed] [Google Scholar]
  5. Chalmers J. J., Kim E., Telford J. N., Wong E. Y., Tacon W. C., Shuler M. L., Wilson D. B. Effects of temperature on Escherichia coli overproducing beta-lactamase or human epidermal growth factor. Appl Environ Microbiol. 1990 Jan;56(1):104–111. doi: 10.1128/aem.56.1.104-111.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cleland J. L., Wang D. I. Refolding and aggregation of bovine carbonic anhydrase B: quasi-elastic light scattering analysis. Biochemistry. 1990 Dec 18;29(50):11072–11078. doi: 10.1021/bi00502a009. [DOI] [PubMed] [Google Scholar]
  7. Goldberg M. E., Rudolph R., Jaenicke R. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry. 1991 Mar 19;30(11):2790–2797. doi: 10.1021/bi00225a008. [DOI] [PubMed] [Google Scholar]
  8. Goldenberg D. P., Smith D. H., King J. Genetic analysis of the folding pathway for the tail spike protein of phage P22. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7060–7064. doi: 10.1073/pnas.80.23.7060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldenberg D., King J. Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endorhamnosidase of bacteriophage P22. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3403–3407. doi: 10.1073/pnas.79.11.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goloubinoff P., Christeller J. T., Gatenby A. A., Lorimer G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature. 1989 Dec 21;342(6252):884–889. doi: 10.1038/342884a0. [DOI] [PubMed] [Google Scholar]
  11. Goloubinoff P., Gatenby A. A., Lorimer G. H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature. 1989 Jan 5;337(6202):44–47. doi: 10.1038/337044a0. [DOI] [PubMed] [Google Scholar]
  12. Haase-Pettingell C. A., King J. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J Biol Chem. 1988 Apr 5;263(10):4977–4983. [PubMed] [Google Scholar]
  13. Hemmingsen S. M., Woolford C., van der Vies S. M., Tilly K., Dennis D. T., Georgopoulos C. P., Hendrix R. W., Ellis R. J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May 26;333(6171):330–334. doi: 10.1038/333330a0. [DOI] [PubMed] [Google Scholar]
  14. Kiefhaber T., Rudolph R., Kohler H. H., Buchner J. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (N Y) 1991 Sep;9(9):825–829. doi: 10.1038/nbt0991-825. [DOI] [PubMed] [Google Scholar]
  15. London J., Skrzynia C., Goldberg M. E. Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. Eur J Biochem. 1974 Sep 1;47(2):409–415. doi: 10.1111/j.1432-1033.1974.tb03707.x. [DOI] [PubMed] [Google Scholar]
  16. Marston F. A. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J. 1986 Nov 15;240(1):1–12. doi: 10.1042/bj2400001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mosteller R. D., Goldstein R. V., Nishimoto K. R. Metabolism of individual proteins in exponentially growing Escherichia coli. J Biol Chem. 1980 Mar 25;255(6):2524–2532. [PubMed] [Google Scholar]
  18. Piatak M., Lane J. A., Laird W., Bjorn M. J., Wang A., Williams M. Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature-sensitive. J Biol Chem. 1988 Apr 5;263(10):4837–4843. [PubMed] [Google Scholar]
  19. Stock A. M., Mottonen J. M., Stock J. B., Schutt C. E. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature. 1989 Feb 23;337(6209):745–749. doi: 10.1038/337745a0. [DOI] [PubMed] [Google Scholar]
  20. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  21. Zettlmeissl G., Rudolph R., Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry. 1979 Dec 11;18(25):5567–5571. doi: 10.1021/bi00592a007. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES