Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1232–1239. doi: 10.1128/aem.61.4.1232-1239.1995

Effect of impact stress on microbial recovery on an agar surface.

S L Stewart 1, S A Grinshpun 1, K Willeke 1, S Terzieva 1, V Ulevicius 1, J Donnelly 1
PMCID: PMC167378  PMID: 7747946

Abstract

Microbial stress due to the impaction of microorganisms onto an agar collection surface was studied experimentally. The relative recovery rates of aerosolized Pseudomonas fluorescens and Micrococcus luteus were determined as a function of the impaction velocity by using a moving agar slide impactor operating over a flow rate range from 3.8 to 40 liters/min yielding impaction velocities from 24 to 250 m/s. As a reference, the sixth stage of the Andersen Six-Stage Viable Particle Sizing Sampler was used at its operating flow rate of 28.3 liters/min (24 m/s). At a collection efficiency of close to 100% for the agar slide impactor, an increase in sampling flow rate and, therefore, in impaction velocity produced a significant decline in the percentage of microorganisms recovered. Conversely, when the collection efficiency was less than 100%, greater recovery and lower injury rates occurred. The highest relative rate of recovery (approximately 51% for P. fluorescens and approximately 62% for M. luteus) was obtained on the complete (Trypticase soy agar) medium at 40 and 24 m/s (6.4 and 3.8 liters/min), respectively. M. luteus demonstrated less damage than P. fluorescens, suggesting the hardy nature of the gram-positive strain versus that of the gram-negative microorganism. Comparison of results from the agar slide and Andersen impactors at the same sampling velocity showed that recovery and injury due to collection depends not only on the magnitude of the impaction velocity but also on the degree to which the microorganisms may be embedded in the collection medium.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (274.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burge H. Bioaerosols: prevalence and health effects in the indoor environment. J Allergy Clin Immunol. 1990 Nov;86(5):687–701. doi: 10.1016/s0091-6749(05)80170-8. [DOI] [PubMed] [Google Scholar]
  2. Chang C. W., Hwang Y. H., Grinshpun S. A., Macher J. M., Willeke K. Evaluation of counting error due to colony masking in bioaerosol sampling. Appl Environ Microbiol. 1994 Oct;60(10):3732–3738. doi: 10.1128/aem.60.10.3732-3738.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cox C. S. The survival of Escherichia coli sprayed into air and into nitrogen from distilled water and from solutions of protecting agents, as a function of relative humidity. J Gen Microbiol. 1966 Jun;43(3):383–399. doi: 10.1099/00221287-43-3-383. [DOI] [PubMed] [Google Scholar]
  4. Fraser D. W. Legionellosis: evidence of airborne transmission. Ann N Y Acad Sci. 1980;353:61–66. doi: 10.1111/j.1749-6632.1980.tb18906.x. [DOI] [PubMed] [Google Scholar]
  5. Fujioka R. S., Narikawa O. T. Effect of sunlight on enumeration of indicator bacteria under field conditions. Appl Environ Microbiol. 1982 Aug;44(2):395–401. doi: 10.1128/aem.44.2.395-401.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jensen P. A., Todd W. F., Davis G. N., Scarpino P. V. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. Am Ind Hyg Assoc J. 1992 Oct;53(10):660–667. doi: 10.1080/15298669291360319. [DOI] [PubMed] [Google Scholar]
  7. Jones W., Morring K., Morey P., Sorenson W. Evaluation of the Andersen viable impactor for single stage sampling. Am Ind Hyg Assoc J. 1985 May;46(5):294–298. doi: 10.1080/15298668591394833. [DOI] [PubMed] [Google Scholar]
  8. Juozaitis A., Willeke K., Grinshpun S. A., Donnelly J. Impaction onto a Glass Slide or Agar versus Impingement into a Liquid for the Collection and Recovery of Airborne Microorganisms. Appl Environ Microbiol. 1994 Mar;60(3):861–870. doi: 10.1128/aem.60.3.861-870.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kapuscinski R. B., Mitchell R. Solar radiation induces sublethal injury in Escherichia coli in seawater. Appl Environ Microbiol. 1981 Mar;41(3):670–674. doi: 10.1128/aem.41.3.670-674.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee R. E., Jr, Harris K., Akland G. Relationship between viable bacteria and air pollutants in an urban atmosphere. Am Ind Hyg Assoc J. 1973 Apr;34(4):164–170. doi: 10.1080/0002889738506826. [DOI] [PubMed] [Google Scholar]
  11. MOSS C. W., SPECK M. L. Injury and death of Streptococcus lactis due to freezing and frozen storage. Appl Microbiol. 1963 Jul;11:326–329. doi: 10.1128/am.11.4.326-329.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MacLeod R. A., Smith L. D., Gelinas R. Metabolic injury to bacteria. I. Effect of freezing and storage on the requirements of Aerobacter aerogenes and Escherichia coli for growth. Can J Microbiol. 1966 Feb;12(1):61–72. doi: 10.1139/m66-010. [DOI] [PubMed] [Google Scholar]
  13. Macher J. M. Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. Am Ind Hyg Assoc J. 1989 Nov;50(11):561–568. doi: 10.1080/15298668991375164. [DOI] [PubMed] [Google Scholar]
  14. Marthi B., Fieland V. P., Walter M., Seidler R. J. Survival of bacteria during aerosolization. Appl Environ Microbiol. 1990 Nov;56(11):3463–3467. doi: 10.1128/aem.56.11.3463-3467.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moss C. W., Speck M. L. Identification of nutritional components in trypticase responsible for recovery of Escherichia coli injured by freezing. J Bacteriol. 1966 Mar;91(3):1098–1104. doi: 10.1128/jb.91.3.1098-1104.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Proctor B. E. The Microbiology of the Upper Air. II. J Bacteriol. 1935 Oct;30(4):363–375. doi: 10.1128/jb.30.4.363-375.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RILEY R. L., MILLS C. C., O'GRADY F., SULTAN L. U., WITTSTADT F., SHIVPURI D. N. Infectiousness of air from a tuberculosis ward. Ultraviolet irradiation of infected air: comparative infectiousness of different patients. Am Rev Respir Dis. 1962 Apr;85:511–525. doi: 10.1164/arrd.1962.85.4.511. [DOI] [PubMed] [Google Scholar]
  18. Ray B., Speck M. L. Freeze-injury in bacteria. CRC Crit Rev Clin Lab Sci. 1973 Aug;4(2):161–213. doi: 10.3109/10408367309151556. [DOI] [PubMed] [Google Scholar]
  19. Riley E. C., Murphy G., Riley R. L. Airborne spread of measles in a suburban elementary school. Am J Epidemiol. 1978 May;107(5):421–432. doi: 10.1093/oxfordjournals.aje.a112560. [DOI] [PubMed] [Google Scholar]
  20. STRAKA R. P., STOKES J. L. Metabolic injury to bacteria at low temperatures. J Bacteriol. 1959 Aug;78:181–185. doi: 10.1128/jb.78.2.181-185.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. STRANGE R. E., DARK F. A. Effect of chilling on Aerobacter aerogenes in aqueous suspension. J Gen Microbiol. 1962 Dec;29:719–730. doi: 10.1099/00221287-29-4-719. [DOI] [PubMed] [Google Scholar]
  22. Walter M. V., Marthi B., Fieland V. P., Ganio L. M. Effect of aerosolization on subsequent bacterial survival. Appl Environ Microbiol. 1990 Nov;56(11):3468–3472. doi: 10.1128/aem.56.11.3468-3472.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wright T. J., Greene V. W., Paulus H. J. Viable microorganisms in an urban atmosphere. J Air Pollut Control Assoc. 1969 May;19(5):337–341. doi: 10.1080/00022470.1969.10466496. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES