Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1257–1265. doi: 10.1128/aem.61.4.1257-1265.1995

Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase.

R D Wind 1, W Liebl 1, R M Buitelaar 1, D Penninga 1, A Spreinat 1, L Dijkhuizen 1, H Bahl 1
PMCID: PMC167382  PMID: 7747949

Abstract

Extensive characterization of the thermostable alpha-amylase of Clostridium thermosulfurogenes EM1, recently reclassified as Thermoanaerobacterium thermosulfurigenes, clearly demonstrated that the enzyme is a cyclodextrin glycosyltransferase (CGTase). Product analysis after incubation of the enzyme with starch revealed formation of alpha-, beta-, and gamma-cyclodextrins, as well as linear sugars. The specific activity for cyclization of this CGTase was similar to those of other CGTases, whereas the specific activity for hydrolysis was relatively high in comparison with other CGTases. Alignment of the amino acid sequence of the T. thermosulfurigenes enzyme with sequences from known bacterial CGTases showed high homology. The four consensus regions of carbohydrate-converting enzymes, as well as a C-terminal raw-starch binding motif, could be identified in the sequence.

Full Text

The Full Text of this article is available as a PDF (451.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahl H., Burchhardt G., Spreinat A., Haeckel K., Wienecke A., Schmidt B., Antranikian G. alpha-Amylase of Clostridium thermosulfurogenes EM1: nucleotide sequence of the gene, processing of the enzyme, and comparison of other alpha-amylases. Appl Environ Microbiol. 1991 May;57(5):1554–1559. doi: 10.1128/aem.57.5.1554-1559.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binder F., Huber O., Böck A. Cyclodextrin-glycosyltransferase from Klebsiella pneumoniae M5a1: cloning, nucleotide sequence and expression. Gene. 1986;47(2-3):269–277. doi: 10.1016/0378-1119(86)90070-3. [DOI] [PubMed] [Google Scholar]
  3. Bovetto L. J., Backer D. P., Villette J. R., Sicard P. J., Bouquelet S. J. Cyclomaltodextrin glucanotransferase from Bacillus circulans E 192. I. Purification and characterization of the enzyme. Biotechnol Appl Biochem. 1992 Feb;15(1):48–58. doi: 10.1111/j.1470-8744.1992.tb00196.x. [DOI] [PubMed] [Google Scholar]
  4. Fujiwara S., Kakihara H., Sakaguchi K., Imanaka T. Analysis of mutations in cyclodextrin glucanotransferase from Bacillus stearothermophilus which affect cyclization characteristics and thermostability. J Bacteriol. 1992 Nov;174(22):7478–7481. doi: 10.1128/jb.174.22.7478-7481.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gray G. L., Mainzer S. E., Rey M. W., Lamsa M. H., Kindle K. L., Carmona C., Requadt C. Structural genes encoding the thermophilic alpha-amylases of Bacillus stearothermophilus and Bacillus licheniformis. J Bacteriol. 1986 May;166(2):635–643. doi: 10.1128/jb.166.2.635-643.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haeckel K., Bahl H. Cloning and expression of the thermostable alpha-amylase gene from Clostridium thermosulfurogenes (DSM 3896) in Escherichia coli. FEMS Microbiol Lett. 1989 Aug;51(3):333–337. doi: 10.1016/0378-1097(89)90420-5. [DOI] [PubMed] [Google Scholar]
  7. Hill D. E., Aldape R., Rozzell J. D. Nucleotide sequence of a cyclodextrin glucosyltransferase gene, cgtA, from Bacillus licheniformis. Nucleic Acids Res. 1990 Jan 11;18(1):199–199. doi: 10.1093/nar/18.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Itkor P., Tsukagoshi N., Udaka S. Nucleotide sequence of the raw-starch-digesting amylase gene from Bacillus sp. B1018 and its strong homology to the cyclodextrin glucanotransferase genes. Biochem Biophys Res Commun. 1990 Jan 30;166(2):630–636. doi: 10.1016/0006-291x(90)90855-h. [DOI] [PubMed] [Google Scholar]
  9. Kaneko T., Hamamoto T., Horikoshi K. Molecular cloning and nucleotide sequence of the cyclomaltodextrin glucanotransferase gene from the alkalophilic Bacillus sp. strain no. 38-2. J Gen Microbiol. 1988 Jan;134(1):97–105. doi: 10.1099/00221287-134-1-97. [DOI] [PubMed] [Google Scholar]
  10. Kimura K., Kataoka S., Ishii Y., Takano T., Yamane K. Nucleotide sequence of the beta-cyclodextrin glucanotransferase gene of alkalophilic Bacillus sp. strain 1011 and similarity of its amino acid sequence to those of alpha-amylases. J Bacteriol. 1987 Sep;169(9):4399–4402. doi: 10.1128/jb.169.9.4399-4402.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klein C., Hollender J., Bender H., Schulz G. E. Catalytic center of cyclodextrin glycosyltransferase derived from X-ray structure analysis combined with site-directed mutagenesis. Biochemistry. 1992 Sep 22;31(37):8740–8746. doi: 10.1021/bi00152a009. [DOI] [PubMed] [Google Scholar]
  12. Lacks S. A., Springhorn S. S. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J Biol Chem. 1980 Aug 10;255(15):7467–7473. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lawson C. L., Bergsma J., Bruinenberg P. M., de Vries G., Dijkhuizen L., Dijkstra B. W. Maltodextrin-dependent crystallization of cyclomaltodextrin glucanotransferase from Bacillus circulans. J Mol Biol. 1990 Aug 20;214(4):807–809. doi: 10.1016/0022-2836(90)90335-J. [DOI] [PubMed] [Google Scholar]
  15. Lawson C. L., van Montfort R., Strokopytov B., Rozeboom H. J., Kalk K. H., de Vries G. E., Penninga D., Dijkhuizen L., Dijkstra B. W. Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol. 1994 Feb 18;236(2):590–600. doi: 10.1006/jmbi.1994.1168. [DOI] [PubMed] [Google Scholar]
  16. Liebl W., Feil R., Gabelsberger J., Kellermann J., Schleifer K. H. Purification and characterization of a novel thermostable 4-alpha-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur J Biochem. 1992 Jul 1;207(1):81–88. doi: 10.1111/j.1432-1033.1992.tb17023.x. [DOI] [PubMed] [Google Scholar]
  17. Madi E., Antranikian G., Ohmiya K., Gottschalk G. Thermostable amylolytic enzymes from a new clostridium isolate. Appl Environ Microbiol. 1987 Jul;53(7):1661–1667. doi: 10.1128/aem.53.7.1661-1667.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsuura Y., Kusunoki M., Harada W., Kakudo M. Structure and possible catalytic residues of Taka-amylase A. J Biochem. 1984 Mar;95(3):697–702. doi: 10.1093/oxfordjournals.jbchem.a134659. [DOI] [PubMed] [Google Scholar]
  19. Nakamura A., Haga K., Ogawa S., Kuwano K., Kimura K., Yamane K. Functional relationships between cyclodextrin glucanotransferase from an alkalophilic Bacillus and alpha-amylases. Site-directed mutagenesis of the conserved two Asp and one Glu residues. FEBS Lett. 1992 Jan 13;296(1):37–40. doi: 10.1016/0014-5793(92)80398-z. [DOI] [PubMed] [Google Scholar]
  20. Sin K., Nakamura A., Kobayashi K., Masaki H., Uozumi T. Cloning and sequencing of a cyclodextrin glucanotransferase gene from Bacillus ohbensis and its expression in Escherichia coli. Appl Microbiol Biotechnol. 1991 Aug;35(5):600–605. doi: 10.1007/BF00169623. [DOI] [PubMed] [Google Scholar]
  21. Svensson B., Jespersen H., Sierks M. R., MacGregor E. A. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J. 1989 Nov 15;264(1):309–311. doi: 10.1042/bj2640309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Svensson B. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol. 1994 May;25(2):141–157. doi: 10.1007/BF00023233. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES