Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1274–1278. doi: 10.1128/aem.61.4.1274-1278.1995

Amplification of DNA polymerase gene fragments from viruses infecting microalgae.

F Chen 1, C A Suttle 1
PMCID: PMC167383  PMID: 7747950

Abstract

Nested PCR with three highly degenerate primers was used for amplification and identification of DNA polymerase (pol) genes from viruses which infect three genera of microalgae. Group-specific primers (AVS1 and AVS2) were designed on the basis of inferred amino acid sequences unique to the DNA pol genes of viruses (PBCV-1 and NY-2A) that infect an endosymbiotic Chlorella-like alga (Chlorophyceae) and a virus (MpV-SP1) which infects the photosynthetic flagellate Micromonas pusilla (Prasinophyceae). In addition, a nested primer (POL) was designed on the basis of the highly conserved amino acid sequence YGDTDS found in most B-family (alpha-like) DNA pol genes. These primers were used to amplify DNA from the three viruses, PBCV-1, NY-2A, and MpV-SP1, for which the primers were designed, as well as eight clonal isolates of genetically distinct viruses which infect M. pusilla and others which infect Chrysochromulina spp. (Prymnesiophyceae), suggesting that these are a group of related viruses. In contrast, no product resulted from using DNA from viruses which infect the marine brown algae Ectocarpus siliculosis and Feldmannia sp. (Phaeophyceae), suggesting that these viruses may not be closely related to those that infect microalgae. These primers were also used to amplify DNA from natural virus communities. Our results indicate that nested PCR, even under low-stringency conditions, can be used as a rapid method to verify the presence in seawater of a group of related viruses which infect microalgae. Sequence analysis of these fragments should provide information on the genetic diversity and potentially the phyletic relationships among these viruses.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (263.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert J., Fenyö E. M. Simple, sensitive, and specific detection of human immunodeficiency virus type 1 in clinical specimens by polymerase chain reaction with nested primers. J Clin Microbiol. 1990 Jul;28(7):1560–1564. doi: 10.1128/jcm.28.7.1560-1564.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ansari S. A., Farrah S. R., Chaudhry G. R. Presence of human immunodeficiency virus nucleic acids in wastewater and their detection by polymerase chain reaction. Appl Environ Microbiol. 1992 Dec;58(12):3984–3990. doi: 10.1128/aem.58.12.3984-3990.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartl S., Weissman I. L. PCR primers containing an inosine triplet to complement a variable codon within a conserved protein-coding region. Biotechniques. 1994 Feb;16(2):246-8, 250. [PubMed] [Google Scholar]
  4. Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gonzalez G. A., Yamamoto K. K., Fischer W. H., Karr D., Menzel P., Biggs W., 3rd, Vale W. W., Montminy M. R. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature. 1989 Feb 23;337(6209):749–752. doi: 10.1038/337749a0. [DOI] [PubMed] [Google Scholar]
  6. Gould S. J., Subramani S., Scheffler I. E. Use of the DNA polymerase chain reaction for homology probing: isolation of partial cDNA or genomic clones encoding the iron-sulfur protein of succinate dehydrogenase from several species. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1934–1938. doi: 10.1073/pnas.86.6.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grabherr R., Strasser P., Van Etten J. L. The DNA polymerase gene from chlorella viruses PBCV-1 and NY-2A contains an intron with nuclear splicing sequences. Virology. 1992 Jun;188(2):721–731. doi: 10.1016/0042-6822(92)90527-v. [DOI] [PubMed] [Google Scholar]
  8. Ito J., Braithwaite D. K. Compilation and alignment of DNA polymerase sequences. Nucleic Acids Res. 1991 Aug 11;19(15):4045–4057. doi: 10.1093/nar/19.15.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kai M., Kamiya S., Sawamura S., Yamamoto T., Ozawa A. Simplified method for confirmation of PCR products. Nucleic Acids Res. 1991 Aug 25;19(16):4562–4562. doi: 10.1093/nar/19.16.4562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knoth K., Roberds S., Poteet C., Tamkun M. Highly degenerate, inosine-containing primers specifically amplify rare cDNA using the polymerase chain reaction. Nucleic Acids Res. 1988 Nov 25;16(22):10932–10932. doi: 10.1093/nar/16.22.10932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kopecka H., Dubrou S., Prevot J., Marechal J., López-Pila J. M. Detection of naturally occurring enteroviruses in waters by reverse transcription, polymerase chain reaction, and hybridization. Appl Environ Microbiol. 1993 Apr;59(4):1213–1219. doi: 10.1128/aem.59.4.1213-1219.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lanka S. T., Klein M., Ramsperger U., Müller D. G., Knippers R. Genome structure of a virus infecting the marine brown alga Ectocarpus siliculosus. Virology. 1993 Apr;193(2):802–811. doi: 10.1006/viro.1993.1189. [DOI] [PubMed] [Google Scholar]
  13. Mack D. H., Sninsky J. J. A sensitive method for the identification of uncharacterized viruses related to known virus groups: hepadnavirus model system. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6977–6981. doi: 10.1073/pnas.85.18.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Molina F. I., Geletka L. M., Jong S. C., Zhang Y. Use of a nested primer pair as control for PCR amplification of ribosomal DNA internal transcribed spacers in fungi. Biotechniques. 1994 Jun;16(6):998-1000, 1002. [PubMed] [Google Scholar]
  15. Palenik B. Cyanobacterial community structure as seen from RNA polymerase gene sequence analysis. Appl Environ Microbiol. 1994 Sep;60(9):3212–3219. doi: 10.1128/aem.60.9.3212-3219.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palenik B., Haselkorn R. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature. 1992 Jan 16;355(6357):265–267. doi: 10.1038/355265a0. [DOI] [PubMed] [Google Scholar]
  17. Paul J. H., Cazares L., Thurmond J. Amplification of the rbcL gene from dissolved and particulate DNA from aquatic environments. Appl Environ Microbiol. 1990 Jun;56(6):1963–1966. doi: 10.1128/aem.56.6.1963-1966.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Puig M., Jofre J., Lucena F., Allard A., Wadell G., Girones R. Detection of adenoviruses and enteroviruses in polluted waters by nested PCR amplification. Appl Environ Microbiol. 1994 Aug;60(8):2963–2970. doi: 10.1128/aem.60.8.2963-2970.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Suttle C. A., Chan A. M., Cottrell M. T. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Appl Environ Microbiol. 1991 Mar;57(3):721–726. doi: 10.1128/aem.57.3.721-726.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsai Y. L., Sobsey M. D., Sangermano L. R., Palmer C. J. Simple method of concentrating enteroviruses and hepatitis A virus from sewage and ocean water for rapid detection by reverse transcriptase-polymerase chain reaction. Appl Environ Microbiol. 1993 Oct;59(10):3488–3491. doi: 10.1128/aem.59.10.3488-3491.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. VAN Etten J. L., Burbank D. E., Kuczmarski D., Meints R. H. Virus infection of culturable chlorella-like algae and dlevelopment of a plaque assay. Science. 1983 Feb 25;219(4587):994–996. doi: 10.1126/science.219.4587.994. [DOI] [PubMed] [Google Scholar]
  22. Van Etten J. L., Lane L. C., Meints R. H. Viruses and viruslike particles of eukaryotic algae. Microbiol Rev. 1991 Dec;55(4):586–620. doi: 10.1128/mr.55.4.586-620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang T. S. Eukaryotic DNA polymerases. Annu Rev Biochem. 1991;60:513–552. doi: 10.1146/annurev.bi.60.070191.002501. [DOI] [PubMed] [Google Scholar]
  24. Zehr J. P., McReynolds L. A. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol. 1989 Oct;55(10):2522–2526. doi: 10.1128/aem.55.10.2522-2526.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhang Y. P., Burbank D. E., Van Etten J. L. Chlorella viruses isolated in China. Appl Environ Microbiol. 1988 Sep;54(9):2170–2173. doi: 10.1128/aem.54.9.2170-2173.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zimmermann K., Pischinger K., Mannhalter J. W. Nested primer PCR detection limits of HIV-1 in the background of increasing numbers of lysed cells. Biotechniques. 1994 Jul;17(1):18–20. [PubMed] [Google Scholar]
  27. Zintz C. B., Beebe D. C. Rapid re-amplification of PCR products purified in low melting point agarose gels. Biotechniques. 1991 Aug;11(2):158–162. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES