Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1341–1347. doi: 10.1128/aem.61.4.1341-1347.1995

Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA).

M Uyttendaele 1, R Schukkink 1, B van Gemen 1, J Debevere 1
PMCID: PMC167389  PMID: 7747955

Abstract

An assay to detect Campylobacter jejuni in foods that uses a short selective enrichment culture, a simple and rapid isolation procedure, NASBA amplification of RNA, and a nonradioactive in solution hybridization was studied. The presence of high numbers of indigenous flora affected the sensitivity of the assay. However, detection of C. jejuni was possible up to a ratio of indigenous flora to C. jejuni of 10,000:1. Interference by food components was eliminated by centrifugation following the enrichment step. Fourteen food samples artificially inoculated with C. jejuni (1 to 1,000 CFU/10 g) were analyzed with the NASBA assay and the conventional culture method with Campylobacter charcoal differential agar (CCDA). A few false-negative results were obtained by both NASBA (1.42%) and CCDA (2.86%) isolation. Yet the use of enrichment culture and NASBA shortened the analysis time from 6 days to 26 h. The relative simplicity and rapidity of the NASBA assay make it an attractive alternative for detection of C. jejuni in food samples.

Full Text

The Full Text of this article is available as a PDF (336.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beumer R. R., de Vries J., Rombouts F. M. Campylobacter jejuni non-culturable coccoid cells. Int J Food Microbiol. 1992 Jan-Feb;15(1-2):153–163. doi: 10.1016/0168-1605(92)90144-r. [DOI] [PubMed] [Google Scholar]
  2. Bohnert M., Dilasser F., Dalet C., Mengaud J., Cossart P. Use of specific oligonucleotides for direct enumeration of Listeria monocytogenes in food samples by colony hybridization and rapid detection by PCR. Res Microbiol. 1992 Mar-Apr;143(3):271–280. doi: 10.1016/0923-2508(92)90019-k. [DOI] [PubMed] [Google Scholar]
  3. Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990 Mar;28(3):495–503. doi: 10.1128/jcm.28.3.495-503.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks J. L., Back J. P., Kroll R. G. Direct application to dairy foods of a Listeria-specific oligonucleotide probe to 16S rRNA. Int J Food Microbiol. 1992 Aug;16(4):303–312. doi: 10.1016/0168-1605(92)90032-x. [DOI] [PubMed] [Google Scholar]
  5. Bruisten S., van Gemen B., Koppelman M., Rasch M., van Strijp D., Schukkink R., Beyer R., Weigel H., Lens P., Huisman H. Detection of HIV-1 distribution in different blood fractions by two nucleic acid amplification assays. AIDS Res Hum Retroviruses. 1993 Mar;9(3):259–265. doi: 10.1089/aid.1993.9.259. [DOI] [PubMed] [Google Scholar]
  6. Butzler J. P., Oosterom J. Campylobacter: pathogenicity and significance in foods. Int J Food Microbiol. 1991 Jan;12(1):1–8. doi: 10.1016/0168-1605(91)90043-o. [DOI] [PubMed] [Google Scholar]
  7. Compton J. Nucleic acid sequence-based amplification. Nature. 1991 Mar 7;350(6313):91–92. doi: 10.1038/350091a0. [DOI] [PubMed] [Google Scholar]
  8. Fitter S., Heuzenroeder M., Thomas C. J. A combined PCR and selective enrichment method for rapid detection of Listeria monocytogenes. J Appl Bacteriol. 1992 Jul;73(1):53–59. doi: 10.1111/j.1365-2672.1992.tb04968.x. [DOI] [PubMed] [Google Scholar]
  9. Furrer B., Candrian U., Hoefelein C., Luethy J. Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol. 1991 May;70(5):372–379. doi: 10.1111/j.1365-2672.1991.tb02951.x. [DOI] [PubMed] [Google Scholar]
  10. Giesendorf B. A., Quint W. G., Henkens M. H., Stegeman H., Huf F. A., Niesters H. G. Rapid and sensitive detection of Campylobacter spp. in chicken products by using the polymerase chain reaction. Appl Environ Microbiol. 1992 Dec;58(12):3804–3808. doi: 10.1128/aem.58.12.3804-3808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giesendorf B. A., van Belkum A., Koeken A., Stegeman H., Henkens M. H., van der Plas J., Goossens H., Niesters H. G., Quint W. G. Development of species-specific DNA probes for Campylobacter jejuni, Campylobacter coli, and Campylobacter lari by polymerase chain reaction fingerprinting. J Clin Microbiol. 1993 Jun;31(6):1541–1546. doi: 10.1128/jcm.31.6.1541-1546.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grant K. A., Dickinson J. H., Payne M. J., Campbell S., Collins M. D., Kroll R. G. Use of the polymerase chain reaction and 16S rRNA sequences for the rapid detection of Brochothrix spp. in foods. J Appl Bacteriol. 1993 Mar;74(3):260–267. doi: 10.1111/j.1365-2672.1993.tb03024.x. [DOI] [PubMed] [Google Scholar]
  13. Griffiths P. L., Park R. W. Campylobacters associated with human diarrhoeal disease. J Appl Bacteriol. 1990 Sep;69(3):281–301. doi: 10.1111/j.1365-2672.1990.tb01519.x. [DOI] [PubMed] [Google Scholar]
  14. Hill W. E., Keasler S. P. Identification of foodborne pathogens by nucleic acid hybridization. Int J Food Microbiol. 1991 Jan;12(1):67–75. doi: 10.1016/0168-1605(91)90048-t. [DOI] [PubMed] [Google Scholar]
  15. Kievits T., van Gemen B., van Strijp D., Schukkink R., Dircks M., Adriaanse H., Malek L., Sooknanan R., Lens P. NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods. 1991 Dec;35(3):273–286. doi: 10.1016/0166-0934(91)90069-c. [DOI] [PubMed] [Google Scholar]
  16. Korolik V., Coloe P. J., Krishnapillai V. A specific DNA probe for the identification of Campylobacter jejuni. J Gen Microbiol. 1988 Feb;134(2):521–529. doi: 10.1099/00221287-134-2-521. [DOI] [PubMed] [Google Scholar]
  17. Oyofo B. A., Thornton S. A., Burr D. H., Trust T. J., Pavlovskis O. R., Guerry P. Specific detection of Campylobacter jejuni and Campylobacter coli by using polymerase chain reaction. J Clin Microbiol. 1992 Oct;30(10):2613–2619. doi: 10.1128/jcm.30.10.2613-2619.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robinson D. A. Infective dose of Campylobacter jejuni in milk. Br Med J (Clin Res Ed) 1981 May 16;282(6276):1584–1584. doi: 10.1136/bmj.282.6276.1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rollins D. M., Colwell R. R. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol. 1986 Sep;52(3):531–538. doi: 10.1128/aem.52.3.531-538.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Romaniuk P. J., Trust T. J. Rapid identification of Campylobacter species using oligonucleotide probes to 16S ribosomal RNA. Mol Cell Probes. 1989 Jun;3(2):133–142. doi: 10.1016/0890-8508(89)90024-8. [DOI] [PubMed] [Google Scholar]
  21. Rossen L., Holmstrøm K., Olsen J. E., Rasmussen O. F. A rapid polymerase chain reaction (PCR)-based assay for the identification of Listeria monocytogenes in food samples. Int J Food Microbiol. 1991 Nov;14(2):145–151. doi: 10.1016/0168-1605(91)90101-t. [DOI] [PubMed] [Google Scholar]
  22. Rossen L., Nørskov P., Holmstrøm K., Rasmussen O. F. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol. 1992 Sep;17(1):37–45. doi: 10.1016/0168-1605(92)90017-w. [DOI] [PubMed] [Google Scholar]
  23. Skirrow M. B. Epidemiology of Campylobacter enteritis. Int J Food Microbiol. 1991 Jan;12(1):9–16. doi: 10.1016/0168-1605(91)90044-p. [DOI] [PubMed] [Google Scholar]
  24. Starbuck M. A., Hill P. J., Stewart G. S. Ultra sensitive detection of Listeria monocytogenes in milk by the polymerase chain reaction (PCR). Lett Appl Microbiol. 1992 Dec;15(6):248–252. doi: 10.1111/j.1472-765x.1992.tb00775.x. [DOI] [PubMed] [Google Scholar]
  25. Thomas E. J., King R. K., Burchak J., Gannon V. P. Sensitive and specific detection of Listeria monocytogenes in milk and ground beef with the polymerase chain reaction. Appl Environ Microbiol. 1991 Sep;57(9):2576–2580. doi: 10.1128/aem.57.9.2576-2580.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walker J., Dougan G. DNA probes: a new role in diagnostic microbiology. J Appl Bacteriol. 1989 Sep;67(3):229–238. doi: 10.1111/j.1365-2672.1989.tb02490.x. [DOI] [PubMed] [Google Scholar]
  27. Wang R. F., Cao W. W., Johnson M. G. 16S rRNA-based probes and polymerase chain reaction method to detect Listeria monocytogenes cells added to foods. Appl Environ Microbiol. 1992 Sep;58(9):2827–2831. doi: 10.1128/aem.58.9.2827-2831.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wernars K., Heuvelman C. J., Chakraborty T., Notermans S. H. Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J Appl Bacteriol. 1991 Feb;70(2):121–126. doi: 10.1111/j.1365-2672.1991.tb04437.x. [DOI] [PubMed] [Google Scholar]
  29. van der Vliet G. M., Schukkink R. A., van Gemen B., Schepers P., Klatser P. R. Nucleic acid sequence-based amplification (NASBA) for the identification of mycobacteria. J Gen Microbiol. 1993 Oct;139(10):2423–2429. doi: 10.1099/00221287-139-10-2423. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES