Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1414–1419. doi: 10.1128/aem.61.4.1414-1419.1995

Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in Candida tropicalis cell suspensions.

E M Lohmeier-Vogel 1, B Hahn-Hägerdal 1, H J Vogel 1
PMCID: PMC167398  PMID: 7747961

Abstract

The metabolism of glucose and xylose was studied as a function of oxygenation in suspensions of Candida tropicalis by 31P and 13C nuclear magnetic resonance spectroscopy. Both the rate of carbohydrate metabolism and the cytoplasmic pH were independent of the rate of oxygenation in cells metabolizing glucose. However, these two parameters were markedly dependent on the rate of oxygenation in C. tropicalis cells metabolizing xylose. For example, the cytoplasmic pH in fully oxygenated xylose-metabolizing cells was 7.8 but decreased to 6.3 in anoxic cells. In general, suspensions of cells consuming xylose had a lower rate of sugar uptake, a more acidic cytoplasmic pH, lower levels of sugarphosphomonoesters (SP) and ATP, higher levels of intracellular Pi, a more alkaline vacuolar pH, and a lower rate of extracellular Pi assimilation and polyphosphate synthesis than cells consuming glucose. These observations indicate that C. tropicalis metabolizing xylose is less energized than glucose-metabolizing cells. On both carbon sources, however, an inverse correlation between intracellular levels of SP and Pi was observed. Also, uptake of extracellular Pi correlated with the synthesis of polyphosphates within the cells. During anoxia, Pi was not taken up, and polyphosphates were hydrolyzed instead to fulfill the cells' requirements for phosphate.

Full Text

The Full Text of this article is available as a PDF (228.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bañuelos M., Gancedo C., Gancedo J. M. Activation by phosphate of yeast phosphofructokinase. J Biol Chem. 1977 Sep 25;252(18):6394–6398. [PubMed] [Google Scholar]
  2. Bruinenberg P. M., van Dijken J. P., Scheffers W. A. An enzymic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol. 1983 Apr;129(4):965–971. doi: 10.1099/00221287-129-4-965. [DOI] [PubMed] [Google Scholar]
  3. Gancedo J. M., Gancedo C. Concentrations of intermediary metabolites in yeast. Biochimie. 1973;55(2):205–211. doi: 10.1016/s0300-9084(73)80393-1. [DOI] [PubMed] [Google Scholar]
  4. Jeanjean R., Blasco F., Hirn M. Identification of a plasma membrane protein involved in Pi transport in the yeast Candida tropicalis. FEBS Lett. 1984 Jan 2;165(1):83–87. doi: 10.1016/0014-5793(84)80019-8. [DOI] [PubMed] [Google Scholar]
  5. Lohmeier-Vogel E. M., Hahn-Hägerdal B., Vogel H. J. Phosphorus-31 and carbon-13 nuclear magnetic resonance study of glucose and xylose metabolism in agarose-immobilized Candida tropicalis. Appl Environ Microbiol. 1995 Apr;61(4):1420–1425. doi: 10.1128/aem.61.4.1420-1425.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lohmeier-Vogel E., Skoog K., Vogel H., Hahn-Hägerdal B. 31P nuclear magnetic resonance study of the effect of azide on xylose fermentation by Candida tropicalis. Appl Environ Microbiol. 1989 Aug;55(8):1974–1980. doi: 10.1128/aem.55.8.1974-1980.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lundberg P., Harmsen E., Ho C., Vogel H. J. Nuclear magnetic resonance studies of cellular metabolism. Anal Biochem. 1990 Dec;191(2):193–222. doi: 10.1016/0003-2697(90)90210-z. [DOI] [PubMed] [Google Scholar]
  8. Nicolay K., Scheffers W. A., Bruinenberg P. M., Kaptein R. In vivo 31P NMR studies on the role of the vacuole in phosphate metabolism in yeasts. Arch Microbiol. 1983 Jul;134(4):270–275. doi: 10.1007/BF00407801. [DOI] [PubMed] [Google Scholar]
  9. Reibstein D., den Hollander J. A., Pilkis S. J., Shulman R. G. Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic glycolysis. Biochemistry. 1986 Jan 14;25(1):219–227. doi: 10.1021/bi00349a031. [DOI] [PubMed] [Google Scholar]
  10. Schneider H. Conversion of pentoses to ethanol by yeasts and fungi. Crit Rev Biotechnol. 1989;9(1):1–40. doi: 10.3109/07388558909040614. [DOI] [PubMed] [Google Scholar]
  11. Senac T., Hahn-Hägerdal B. Intermediary Metabolite Concentrations in Xylulose- and Glucose-Fermenting Saccharomyces cerevisiae Cells. Appl Environ Microbiol. 1990 Jan;56(1):120–126. doi: 10.1128/aem.56.1.120-126.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Visser W., Scheffers W. A., Batenburg-van der Vegte W. H., van Dijken J. P. Oxygen requirements of yeasts. Appl Environ Microbiol. 1990 Dec;56(12):3785–3792. doi: 10.1128/aem.56.12.3785-3792.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wang P. Y., Shopsis C., Schneider H. Fermentation of a pentose by yeasts. Biochem Biophys Res Commun. 1980 May 14;94(1):248–254. doi: 10.1016/s0006-291x(80)80213-0. [DOI] [PubMed] [Google Scholar]
  14. den Hollander J. A., Ugurbil K., Brown T. R., Shulman R. G. Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast. Biochemistry. 1981 Sep 29;20(20):5871–5880. doi: 10.1021/bi00523a034. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES