Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1555–1562. doi: 10.1128/aem.61.4.1555-1562.1995

Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii.

C L Moyer 1, F C Dobbs 1, D M Karl 1
PMCID: PMC167411  PMID: 7538279

Abstract

The phylogenetic diversity of small-subunit rRNA genes associated with the domain Bacteria was examined (by using previously defined operational taxonomic units [C. L. Moyer, F.C. Dobbs, and D. M. Karl, Appl. Environ. Microbiol. 60:871-879, 1994]; those for Pele's Vents Bacteria are hereafter abbreviated PVB OTUs) with samples from a microbial mat at an active, deep-sea hydrothermal vent system. A cluster of phylogenetically related PVB OTUs (OTUs 2, 3, 6, and 8) was closely affiliated with Thiovulum sp. contained within the epsilon subclass of the class Proteobacteria and accounted for 60.5% of the small-subunit rRNA bacterial clone library from Pele's Vents. A second, smaller cluster of PVB OTUs (OTUs 1 and 11) was closely affiliated with Xanthomonas sp., contained within the gamma subclass of the Proteobacteria and accounted for a total of 27.1% of the bacterial clone library. The remaining five PVB OTUs each accounted for 2.1% of the clones recovered and were affiliated with the following phylogenetic groups: PVB OTU 5 was a member of the Alteromonas group; PVB OTU 12 was a member of the Colwellia assemblage; PVB OTU 4 was loosely determined to be a member of the Thiothrix group, with the endosymbiotic bacteria from Bathymodiolus thermophilus and Calyptogena magnifica as the nearest relatives; PVB OTU 10B was a member of the Myxobacterium group; and PVB OTU 9A was a member of the Paraphyletic assemblage, with the Octopus Spring microbial mat type K clone as the closest known relative.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (270.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann L., Baumann P., Mandel M., Allen R. D. Taxonomy of aerobic marine eubacteria. J Bacteriol. 1972 Apr;110(1):402–429. doi: 10.1128/jb.110.1.402-429.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brockman E. R. Fruiting myxobacteria from the South Carolina coast. J Bacteriol. 1967 Oct;94(4):1253–1254. doi: 10.1128/jb.94.4.1253-1254.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Distel D. L., Lane D. J., Olsen G. J., Giovannoni S. J., Pace B., Pace N. R., Stahl D. A., Felbeck H. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol. 1988 Jun;170(6):2506–2510. doi: 10.1128/jb.170.6.2506-2510.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fuhrman J. A., McCallum K., Davis A. A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol. 1993 May;59(5):1294–1302. doi: 10.1128/aem.59.5.1294-1302.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
  6. Harwood C. S., Jannasch H. W., Canale-Parola E. Anaerobic spirochete from a deep-sea hydrothermal vent. Appl Environ Microbiol. 1982 Jul;44(1):234–237. doi: 10.1128/aem.44.1.234-237.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jannasch H. W., Mottl M. J. Geomicrobiology of deep-sea hydrothermal vents. Science. 1985 Aug 23;229(4715):717–725. doi: 10.1126/science.229.4715.717. [DOI] [PubMed] [Google Scholar]
  8. Jørgensen B. B., Revsbech N. P. Colorless Sulfur Bacteria, Beggiatoa spp. and Thiovulum spp., in O(2) and H(2)S Microgradients. Appl Environ Microbiol. 1983 Apr;45(4):1261–1270. doi: 10.1128/aem.45.4.1261-1270.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
  10. Kopczynski E. D., Bateson M. M., Ward D. M. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol. 1994 Feb;60(2):746–748. doi: 10.1128/aem.60.2.746-748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lane D. J., Harrison A. P., Jr, Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol. 1992 Jan;174(1):269–278. doi: 10.1128/jb.174.1.269-278.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lane D. J., Stahl D. A., Olsen G. J., Heller D. J., Pace N. R. Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J Bacteriol. 1985 Jul;163(1):75–81. doi: 10.1128/jb.163.1.75-81.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. The ribosomal database project. Nucleic Acids Res. 1993 Jul 1;21(13):3021–3023. doi: 10.1093/nar/21.13.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morita R. Y. Psychrophilic bacteria. Bacteriol Rev. 1975 Jun;39(2):144–167. doi: 10.1128/br.39.2.144-167.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moyer C. L., Dobbs F. C., Karl D. M. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1994 Mar;60(3):871–879. doi: 10.1128/aem.60.3.871-879.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ruby E. G., Wirsen C. O., Jannasch H. W. Chemolithotrophic sulfur-oxidizing bacteria from the galapagos rift hydrothermal vents. Appl Environ Microbiol. 1981 Aug;42(2):317–324. doi: 10.1128/aem.42.2.317-324.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rückert G. Zur Verbreitung von Fruchtkörper-bildenden Myxobakterien in europäischen Strand- und Dünenböden. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1975;130(4):343–347. [PubMed] [Google Scholar]
  19. Schmidt T. M., DeLong E. F., Pace N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991 Jul;173(14):4371–4378. doi: 10.1128/jb.173.14.4371-4378.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shimkets L., Woese C. R. A phylogenetic analysis of the myxobacteria: basis for their classification. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9459–9463. doi: 10.1073/pnas.89.20.9459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thorne J. L., Kishino H., Felsenstein J. An evolutionary model for maximum likelihood alignment of DNA sequences. J Mol Evol. 1991 Aug;33(2):114–124. doi: 10.1007/BF02193625. [DOI] [PubMed] [Google Scholar]
  22. Ward D. M., Weller R., Bateson M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990 May 3;345(6270):63–65. doi: 10.1038/345063a0. [DOI] [PubMed] [Google Scholar]
  23. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., Van Etten J. A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol. 1989 Dec;171(12):6455–6467. doi: 10.1128/jb.171.12.6455-6467.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weller R., Bateson M. M., Heimbuch B. K., Kopczynski E. D., Ward D. M. Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol. 1992 Dec;58(12):3964–3969. doi: 10.1128/aem.58.12.3964-3969.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wirsen C. O., Jannasch H. W. Physiological and morphological observations on Thiovulum sp. J Bacteriol. 1978 Nov;136(2):765–774. doi: 10.1128/jb.136.2.765-774.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES