Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1580–1585. doi: 10.1128/aem.61.4.1580-1585.1995

Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae.

A Kuhn 1, C van Zyl 1, A van Tonder 1, B A Prior 1
PMCID: PMC167412  PMID: 7747971

Abstract

A cytosolic aldo-keto reductase was purified from Saccharomyces cerevisiae ATCC 26602 to homogeneity by affinity chromatography, chromatofocusing, and hydroxylapatite chromatography. The relative molecular weights of the aldo-keto reductase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography were 36,800 and 35,000, respectively, indicating that the enzyme is monomeric. Amino acid composition and N-terminal sequence analysis revealed that the enzyme is closely related to the aldose reductases of xylose-fermenting yeasts and mammalian tissues. The enzyme was apparently immunologically unrelated to the aldose reductases of other xylose-fermenting yeasts. The aldo-keto reductase is NADPH specific and catalyzes the reduction of a variety of aldehydes. The best substrate for the enzyme is the aromatic aldehyde p-nitrobenzaldehyde (Km = 46 microM; kcat/Km = 52,100 s-1 M-1), whereas among the aldoses, DL-glyceraldehyde was the preferred substrate (Km = 1.44 mM; kcat/Km = 1,790 s-1 M-1). The enzyme failed to catalyze the reduction of menadione and p-benzoquinone, substrates for carbonyl reductase. The enzyme was inhibited only slightly by 2 mM sodium valproate and was activated by pyridoxal 5'-phosphate. The optimum pH of the enzyme is 5. These data indicate that the S. cerevisiae aldo-keto reductase is a monomeric NADPH-specific reductase with strong similarities to the aldose reductases.

Full Text

The Full Text of this article is available as a PDF (247.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ansari N. H., Bhatnagar A., Liu S. Q., Srivastava S. K. Purification and characterization of aldose reductase and aldehyde reductase from human kidney. Biochem Int. 1991 Nov;25(4):755–765. [PubMed] [Google Scholar]
  3. Bartels D., Engelhardt K., Roncarati R., Schneider K., Rotter M., Salamini F. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J. 1991 May;10(5):1037–1043. doi: 10.1002/j.1460-2075.1991.tb08042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bedford J. J., Bagnasco S. M., Kador P. F., Harris H. W., Jr, Burg M. B. Characterization and purification of a mammalian osmoregulatory protein, aldose reductase, induced in renal medullary cells by high extracellular NaCl. J Biol Chem. 1987 Oct 15;262(29):14255–14259. [PubMed] [Google Scholar]
  5. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
  6. Bohren K. M., Bullock B., Wermuth B., Gabbay K. H. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem. 1989 Jun 5;264(16):9547–9551. [PubMed] [Google Scholar]
  7. Bohren K. M., Page J. L., Shankar R., Henry S. P., Gabbay K. H. Expression of human aldose and aldehyde reductases. Site-directed mutagenesis of a critical lysine 262. J Biol Chem. 1991 Dec 15;266(35):24031–24037. [PubMed] [Google Scholar]
  8. Branlant G. Properties of an aldose reductase from pig lens. Comparative studies of an aldehyde reductase from pig lens. Eur J Biochem. 1982 Dec;129(1):99–104. doi: 10.1111/j.1432-1033.1982.tb07026.x. [DOI] [PubMed] [Google Scholar]
  9. Carper D. A., Wistow G., Nishimura C., Graham C., Watanabe K., Fujii Y., Hayashi H., Hayaishi O. A superfamily of NADPH-dependent reductases in eukaryotes and prokaryotes. Exp Eye Res. 1989 Sep;49(3):377–388. doi: 10.1016/0014-4835(89)90048-1. [DOI] [PubMed] [Google Scholar]
  10. Cogan D. G., Kinoshita J. H., Kador P. F., Robison G., Datilis M. B., Cobo L. M., Kupfer C. NIH conference. Aldose reductase and complications of diabetes. Ann Intern Med. 1984 Jul;101(1):82–91. doi: 10.7326/0003-4819-101-1-82. [DOI] [PubMed] [Google Scholar]
  11. Cromlish J. A., Flynn T. G. Purification and characterization of two aldose reductase isoenzymes from rabbit muscle. J Biol Chem. 1983 Mar 10;258(5):3416–3424. [PubMed] [Google Scholar]
  12. Flynn T. G. Aldehyde reductases: monomeric NADPH-dependent oxidoreductases with multifunctional potential. Biochem Pharmacol. 1982 Sep 1;31(17):2705–2712. doi: 10.1016/0006-2952(82)90123-x. [DOI] [PubMed] [Google Scholar]
  13. Gong C. S., Chen L. F., Flickinger M. C., Chiang L. C., Tsao G. T. Production of Ethanol from d-Xylose by Using d-Xylose Isomerase and Yeasts. Appl Environ Microbiol. 1981 Feb;41(2):430–436. doi: 10.1128/aem.41.2.430-436.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffin B. W. Functional and structural relationships among aldose reductase, L-hexonate dehydrogenase (aldehyde reductase), and recently identified homologous proteins. Enzyme Microb Technol. 1992 Sep;14(9):690–695. doi: 10.1016/0141-0229(92)90107-y. [DOI] [PubMed] [Google Scholar]
  15. Grimshaw C. E. Direct measurement of the rate of ring opening of D-glucose by enzyme-catalyzed reduction. Carbohydr Res. 1986 May 1;148(2):345–348. doi: 10.1016/s0008-6215(00)90401-4. [DOI] [PubMed] [Google Scholar]
  16. Hallborn J., Walfridsson M., Airaksinen U., Ojamo H., Hahn-Hägerdal B., Penttilä M., Keräsnen S. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (N Y) 1991 Nov;9(11):1090–1095. doi: 10.1038/nbt1191-1090. [DOI] [PubMed] [Google Scholar]
  17. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  18. Ho N. W., Lin F. P., Huang S., Andrews P. C., Tsao G. T. Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb Technol. 1990 Jan;12(1):33–39. doi: 10.1016/0141-0229(90)90177-r. [DOI] [PubMed] [Google Scholar]
  19. Imamura Y., Higuchi T., Nozaki Y., Sugino E., Hibino S., Otagiri M. Purification and properties of carbonyl reductase from rabbit kidney. Arch Biochem Biophys. 1993 Feb 1;300(2):570–576. doi: 10.1006/abbi.1993.1079. [DOI] [PubMed] [Google Scholar]
  20. Inagaki K., Miwa I., Okuda J. Affinity purification and glucose specificity of aldose reductase from bovine lens. Arch Biochem Biophys. 1982 Jun;216(1):337–344. doi: 10.1016/0003-9861(82)90219-3. [DOI] [PubMed] [Google Scholar]
  21. Kataoka M., Sakai H., Morikawa T., Katoh M., Miyoshi T., Shimizu S., Yamada H. Characterization of aldehyde reductase of Sporobolomyces salmonicolor. Biochim Biophys Acta. 1992 Jul 13;1122(1):57–62. doi: 10.1016/0167-4838(92)90127-y. [DOI] [PubMed] [Google Scholar]
  22. Kawasaki N., Tanimoto T., Tanaka A. Characterization of aldose reductase and aldehyde reductase from rat testis. Biochim Biophys Acta. 1989 Jun 13;996(1-2):30–36. doi: 10.1016/0167-4838(89)90090-3. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Magdolen V., Oechsner U., Trommler P., Bandlow W. Transcriptional control by galactose of a yeast gene encoding a protein homologous to mammalian aldo/keto reductases. Gene. 1990 May 31;90(1):105–114. doi: 10.1016/0378-1119(90)90445-w. [DOI] [PubMed] [Google Scholar]
  25. Metzger H., Shapiro M. B., Mosimann J. E., Vinton J. E. Assessment of compositional relatedness between proteins. Nature. 1968 Sep 14;219(5159):1166–1168. doi: 10.1038/2191166a0. [DOI] [PubMed] [Google Scholar]
  26. Morjana N. A., Flynn T. G. Aldose reductase from human psoas muscle. Purification, substrate specificity, immunological characterization, and effect of drugs and inhibitors. J Biol Chem. 1989 Feb 15;264(5):2906–2911. [PubMed] [Google Scholar]
  27. Morjana N. A., Lyons C., Flynn T. G. Aldose reductase from human psoas muscle. Affinity labeling of an active site lysine by pyridoxal 5'-phosphate and pyridoxal 5'-diphospho-5'-adenosine. J Biol Chem. 1989 Feb 15;264(5):2912–2919. [PubMed] [Google Scholar]
  28. Oechsner U., Magdolen V., Bandlow W. A nuclear yeast gene (GCY) encodes a polypeptide with high homology to a vertebrate eye lens protein. FEBS Lett. 1988 Sep 26;238(1):123–128. doi: 10.1016/0014-5793(88)80240-0. [DOI] [PubMed] [Google Scholar]
  29. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  30. Switzer R. C., 3rd, Merril C. R., Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem. 1979 Sep 15;98(1):231–237. doi: 10.1016/0003-2697(79)90732-2. [DOI] [PubMed] [Google Scholar]
  31. Takuma S., Nakashima N., Tantirungkij M., Kinoshita S., Okada H., Seki T., Yoshida T. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol. 1991 Spring;28-29:327–340. doi: 10.1007/BF02922612. [DOI] [PubMed] [Google Scholar]
  32. Tanimoto T., Fukuda H., Kawamura J. Purification and some properties of aldose reductase from rabbit lens. Chem Pharm Bull (Tokyo) 1983 Jul;31(7):2395–2403. doi: 10.1248/cpb.31.2395. [DOI] [PubMed] [Google Scholar]
  33. Tanimoto T., Sato S., Kador P. F. Purification and properties of aldose reductase and aldehyde reductase from EHS tumor cells. Biochem Pharmacol. 1990 Feb 1;39(3):445–453. doi: 10.1016/0006-2952(90)90049-q. [DOI] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Turner A. J., Flynn T. G. The nomenclature of aldehyde reductases. Prog Clin Biol Res. 1982;114:401–402. [PubMed] [Google Scholar]
  36. Vander Jagt D. L., Hunsaker L. A., Robinson B., Stangebye L. A., Deck L. M. Aldehyde and aldose reductases from human placenta. Heterogeneous expression of multiple enzyme forms. J Biol Chem. 1990 Jul 5;265(19):10912–10918. [PubMed] [Google Scholar]
  37. Verduyn C., Van Kleef R., Frank J., Schreuder H., Van Dijken J. P., Scheffers W. A. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J. 1985 Mar 15;226(3):669–677. doi: 10.1042/bj2260669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wermuth B. Aldo-keto reductases. Prog Clin Biol Res. 1985;174:209–230. [PubMed] [Google Scholar]
  39. Wermuth B., Bohren K. M., Heinemann G., von Wartburg J. P., Gabbay K. H. Human carbonyl reductase. Nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protein. J Biol Chem. 1988 Nov 5;263(31):16185–16188. [PubMed] [Google Scholar]
  40. Wermuth B., Bürgisser H., Bohren K., von Wartburg J. P. Purification and characterization of human-brain aldose reductase. Eur J Biochem. 1982 Oct;127(2):279–284. doi: 10.1111/j.1432-1033.1982.tb06867.x. [DOI] [PubMed] [Google Scholar]
  41. van Zyl C., Prior B. A., Kilian S. G., Brandt E. V. Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Appl Environ Microbiol. 1993 May;59(5):1487–1494. doi: 10.1128/aem.59.5.1487-1494.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van Zyl C., Prior B. A., Kilian S. G., Kock J. L. D-xylose utilization by Saccharomyces cerevisiae. J Gen Microbiol. 1989 Nov;135(11):2791–2798. doi: 10.1099/00221287-135-11-2791. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES