Abstract
Seventeen Bradyrhizobium sp. strains and one Azorhizobium strain were compared on the basis of five genetic and phenetic features: (i) partial sequence analyses of the 16S rRNA gene (rDNA), (ii) randomly amplified DNA polymorphisms (RAPD) using three oligonucleotide primers, (iii) total cellular protein profiles, (iv) utilization of 21 aliphatic and 22 aromatic substrates, and (v) intrinsic resistances to seven antibiotics. Partial 16S rDNA analysis revealed the presence of only two rDNA homology (i.e., identity) groups among the 17 Bradyrhizobium strains. The partial 16S rDNA sequences of Bradyrhizobium sp. strains form a tight similarity (> 95%) cluster with Rhodopseudomonas palustris, Nitrobacter species, Afipia species, and Blastobacter denitrificans but were less similar to other members of the alpha-Proteobacteria, including other members of the Rhizobiaceae family. Clustering the Bradyrhizobium sp. strains for their RAPD profiles, protein profiles, and substrate utilization data revealed more diversity than rDNA analysis. Intrinsic antibiotic resistance yielded strain-specific patterns that could not be clustered. High rDNA similarity appeared to be a prerequisite, but it did not necessarily lead to high similarity values between RAPD profiles, protein profiles, and substrate utilization. The various relationship structures, coming forth from each of the studied features, had low compatibilities, casting doubt on the usefulness of a polyphasic approach in rhizobial taxonomy.
Full Text
The Full Text of this article is available as a PDF (717.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107–127. doi: 10.1016/0022-2836(81)90508-8. [DOI] [PubMed] [Google Scholar]
- Brusseau G. A., Bulygina E. S., Hanson R. S. Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl Environ Microbiol. 1994 Feb;60(2):626–636. doi: 10.1128/aem.60.2.626-636.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dooley J. J., Harrison S. P., Mytton L. R., Dye M., Cresswell A., Skot L., Beeching J. R. Phylogenetic grouping and identification of Rhizobium isolates on the basis of random amplified polymorphic DNA profiles. Can J Microbiol. 1993 Jul;39(7):665–673. doi: 10.1139/m93-096. [DOI] [PubMed] [Google Scholar]
- Dupuy N., Willems A., Pot B., Dewettinck D., Vandenbruaene I., Maestrojuan G., Dreyfus B., Kersters K., Collins M. D., Gillis M. Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol. 1994 Jul;44(3):461–473. doi: 10.1099/00207713-44-3-461. [DOI] [PubMed] [Google Scholar]
- Harrison S. P., Mytton L. R., Skøt L., Dye M., Cresswell A. Characterisation of Rhizobium isolates by amplification of DNA polymorphisms using random primers. Can J Microbiol. 1992 Oct;38(10):1009–1015. doi: 10.1139/m92-166. [DOI] [PubMed] [Google Scholar]
- Häne B. G., Jäger K., Drexler H. G. The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis. 1993 Oct;14(10):967–972. doi: 10.1002/elps.11501401154. [DOI] [PubMed] [Google Scholar]
- Jarvis B. D., Downer H. L., Young J. P. Phylogeny of fast-growing soybean-nodulating rhizobia support synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int J Syst Bacteriol. 1992 Jan;42(1):93–96. doi: 10.1099/00207713-42-1-93. [DOI] [PubMed] [Google Scholar]
- Judd A. K., Schneider M., Sadowsky M. J., de Bruijn F. J. Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol. 1993 Jun;59(6):1702–1708. doi: 10.1128/aem.59.6.1702-1708.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig W., Mittenhuber G., Friedrich C. G. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol. 1993 Apr;43(2):363–367. doi: 10.1099/00207713-43-2-363. [DOI] [PubMed] [Google Scholar]
- O'Connor S. P., Dorsch M., Steigerwalt A. G., Brenner D. J., Stackebrandt E. 16S rRNA sequences of Bartonella bacilliformis and cat scratch disease bacillus reveal phylogenetic relationships with the alpha-2 subgroup of the class Proteobacteria. J Clin Microbiol. 1991 Oct;29(10):2144–2150. doi: 10.1128/jcm.29.10.2144-2150.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orso S., Gouy M., Navarro E., Normand P. Molecular phylogenetic analysis of Nitrobacter spp. Int J Syst Bacteriol. 1994 Jan;44(1):83–86. doi: 10.1099/00207713-44-1-83. [DOI] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Schmidt E. L., Bakole R. O., Bohlool B. B. Fluorescent-antibody approach to study of rhizobia in soil. J Bacteriol. 1968 Jun;95(6):1987–1992. doi: 10.1128/jb.95.6.1987-1992.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stackebrandt E., Fischer A., Roggentin T., Wehmeyer U., Bomar D., Smida J. A phylogenetic survey of budding, and/or prosthecate, non-phototrophic eubacteria: membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter and "dichotomicrobium" to the alpha-subdivision of purple non-sulfur bacteria. Arch Microbiol. 1988;149(6):547–556. doi: 10.1007/BF00446759. [DOI] [PubMed] [Google Scholar]
- Stahl D. A., Key R., Flesher B., Smit J. The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol. 1992 Apr;174(7):2193–2198. doi: 10.1128/jb.174.7.2193-2198.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stouthamer A. H. Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Antonie Van Leeuwenhoek. 1992 Jan;61(1):1–33. doi: 10.1007/BF00572119. [DOI] [PubMed] [Google Scholar]
- Stowers M. D. Carbon metabolism in Rhizobium species. Annu Rev Microbiol. 1985;39:89–108. doi: 10.1146/annurev.mi.39.100185.000513. [DOI] [PubMed] [Google Scholar]
- Van Coppenolle B., Watanabe I., Van Hove C., McCouch S. R. Genetic diversity and phylogeny analysis of Azolla based on DNA amplification by arbitrary primers. Genome. 1993 Aug;36(4):686–693. doi: 10.1139/g93-092. [DOI] [PubMed] [Google Scholar]
- Willems A., Collins M. D. Evidence for a close genealogical relationship between Afipia (the causal organism of cat scratch disease), Bradyrhizobium japonicum and Blastobacter denitrificans. FEMS Microbiol Lett. 1992 Sep 15;75(2-3):241–246. doi: 10.1016/0378-1097(92)90411-g. [DOI] [PubMed] [Google Scholar]
- Willems A., Collins M. D. Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol. 1993 Apr;43(2):305–313. doi: 10.1099/00207713-43-2-305. [DOI] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong F. Y., Stackebrandt E., Ladha J. K., Fleischman D. E., Date R. A., Fuerst J. A. Phylogenetic Analysis of Bradyrhizobium japonicum and Photosynthetic Stem-Nodulating Bacteria from Aeschynomene Species Grown in Separated Geographical Regions. Appl Environ Microbiol. 1994 Mar;60(3):940–946. doi: 10.1128/aem.60.3.940-946.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanagi M., Yamasato K. Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett. 1993 Feb 15;107(1):115–120. doi: 10.1111/j.1574-6968.1993.tb06014.x. [DOI] [PubMed] [Google Scholar]
- Young J. P., Downer H. L., Eardly B. D. Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol. 1991 Apr;173(7):2271–2277. doi: 10.1128/jb.173.7.2271-2277.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]