Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1627–1629. doi: 10.1128/aem.61.4.1627-1629.1995

Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis.

L Steidler 1, J M Wells 1, A Raeymaekers 1, J Vandekerckhove 1, W Fiers 1, E Remaut 1
PMCID: PMC167420  PMID: 7747977

Abstract

Secretion of functional recombinant murine interleukin-2 (mIL2) by Lactococcus lactis was achieved by fusion of the sequence encoding mature mIL2 to the secretion signal leader of the lactococcal usp45 gene placed under transcriptional control of the phage T7 promoter-T7 RNA polymerase expression system. The recombinant mature mIL2 was one of only a few proteins which accumulated in the growth medium. Sequence analysis revealed correct processing at the first amino acid of the mature protein. A T-cell proliferation assay showed that the recombinant protein has the same specific biological activity as mIL2 obtained from a natural source.

Full Text

The Full Text of this article is available as a PDF (176.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  2. Demolder J., Fiers W., Contreras R. Efficient synthesis of secreted murine interleukin-2 by Saccharomyces cerevisiae: influence of 3'-untranslated regions and codon usage. Gene. 1992 Feb 15;111(2):207–213. doi: 10.1016/0378-1119(92)90688-l. [DOI] [PubMed] [Google Scholar]
  3. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  4. Guisez Y., Demolder J., Mertens N., Raeymaekers A., Plaetinck G., Robbens J., Vandekerckhove J., Remaut E., Fiers W. High-level expression, purification, and renaturation of recombinant murine interleukin-2 from Escherichia coli. Protein Expr Purif. 1993 Jun;4(3):240–246. doi: 10.1006/prep.1993.1031. [DOI] [PubMed] [Google Scholar]
  5. Howard M., Matis L., Malek T. R., Shevach E., Kell W., Cohen D., Nakanishi K., Paul W. E. Interleukin 2 induces antigen-reactive T cell lines to secrete BCGF-I. J Exp Med. 1983 Dec 1;158(6):2024–2039. doi: 10.1084/jem.158.6.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kashima N., Nishi-Takaoka C., Fujita T., Taki S., Yamada G., Hamuro J., Taniguchi T. Unique structure of murine interleukin-2 as deduced from cloned cDNAs. 1985 Jan 31-Feb 6Nature. 313(6001):402–404. doi: 10.1038/313402a0. [DOI] [PubMed] [Google Scholar]
  7. Morgan D. A., Ruscetti F. W., Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976 Sep 10;193(4257):1007–1008. doi: 10.1126/science.181845. [DOI] [PubMed] [Google Scholar]
  8. Mosmann T. R., Yokota T., Kastelein R., Zurawski S. M., Arai N., Takebe Y. Species-specificity of T cell stimulating activities of IL 2 and BSF-1 (IL 4): comparison of normal and recombinant, mouse and human IL 2 and BSF-1 (IL 4). J Immunol. 1987 Mar 15;138(6):1813–1816. [PubMed] [Google Scholar]
  9. Simons G., Rutten G., Hornes M., Nijhuis M., van Asseldonk M. Production of prochymosin in lactococci. Adv Exp Med Biol. 1991;306:115–119. doi: 10.1007/978-1-4684-6012-4_14. [DOI] [PubMed] [Google Scholar]
  10. Stanssens P., Opsomer C., McKeown Y. M., Kramer W., Zabeau M., Fritz H. J. Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers. Nucleic Acids Res. 1989 Jun 26;17(12):4441–4454. doi: 10.1093/nar/17.12.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wagner H., Hardt C., Heeg K., Pfizenmaier K., Solbach W., Bartlett R., Stockinger H., Röllinghoff M. T-T cell interactions during cytotoxic T lymphocyte (CTL) responses: T cell derived helper factor (Interleukin 2) as a probe to analyze CTL responsiveness and thymic maturation of CTL progenitors. Immunol Rev. 1980;51:215–255. doi: 10.1111/j.1600-065x.1980.tb00323.x. [DOI] [PubMed] [Google Scholar]
  12. Wells J. M., Wilson P. W., Le Page R. W. Improved cloning vectors and transformation procedure for Lactococcus lactis. J Appl Bacteriol. 1993 Jun;74(6):629–636. doi: 10.1111/j.1365-2672.1993.tb05195.x. [DOI] [PubMed] [Google Scholar]
  13. Wells J. M., Wilson P. W., Norton P. M., Gasson M. J., Le Page R. W. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol. 1993 Jun;8(6):1155–1162. doi: 10.1111/j.1365-2958.1993.tb01660.x. [DOI] [PubMed] [Google Scholar]
  14. Wells J. M., Wilson P. W., Norton P. M., Le Page R. W. A model system for the investigation of heterologous protein secretion pathways in Lactococcus lactis. Appl Environ Microbiol. 1993 Nov;59(11):3954–3959. doi: 10.1128/aem.59.11.3954-3959.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. van Asseldonk M., Rutten G., Oteman M., Siezen R. J., de Vos W. M., Simons G. Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene. 1990 Oct 30;95(1):155–160. doi: 10.1016/0378-1119(90)90428-t. [DOI] [PubMed] [Google Scholar]
  16. van de Guchte M., van der Vossen J. M., Kok J., Venema G. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1989 Jan;55(1):224–228. doi: 10.1128/aem.55.1.224-228.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES