Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 May;61(5):1731–1738. doi: 10.1128/aem.61.5.1731-1738.1995

Susceptibility of suspended and surface-attached Salmonella enteritidis to biocides and elevated temperatures.

V K Dhir 1, C E Dodd 1
PMCID: PMC167435  PMID: 7646010

Abstract

The differential resistance of substratum-attached, detached, and planktonic cells of Salmonella enteritidis phage type 4 was studied by using several inimical processes and in vivo bioluminescence as a nondestructive, real-time reporter of metabolic activity. Bioluminescence in this strain was mediated by a construction containing the entire lux operon from Photorhabdus luminescens. An excellent correlation between bioluminescence and classical plate count data was obtained when we compared attachment profiles, biocide concentration exponents, and thermal inactivation D values (D value was the time required for a 10-fold reduction in the number of survivors). Biocide challenge of surface-adherent S. enteritidis resulted in concentration exponents that were experimentally indistinguishable from those obtained with Luria-Bertani broth-grown planktonic cells. It appears that cleansing regimes developed by using planktonic cell data are effective against surface-attached cells of this bacterium. Both attached and detached cells exhibited an approximately twofold increase in D values at 52 degrees C compared with values calculated for planktonic cells, strongly indicating that the detached cells exhibited an attached phenotype during the heating process. A model of a physiological adaptive response induced in attached cells and also reflected in detached cells is presented.

Full Text

The Full Text of this article is available as a PDF (264.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blenkinsopp S. A., Khoury A. E., Costerton J. W. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 1992 Nov;58(11):3770–3773. doi: 10.1128/aem.58.11.3770-3773.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bright J. J., Fletcher M. Amino Acid assimilation and electron transport system activity in attached and free-living marine bacteria. Appl Environ Microbiol. 1983 Mar;45(3):818–825. doi: 10.1128/aem.45.3.818-825.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bronstein I., Fortin J., Stanley P. E., Stewart G. S., Kricka L. J. Chemiluminescent and bioluminescent reporter gene assays. Anal Biochem. 1994 Jun;219(2):169–181. doi: 10.1006/abio.1994.1254. [DOI] [PubMed] [Google Scholar]
  4. Carpentier B., Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol. 1993 Dec;75(6):499–511. doi: 10.1111/j.1365-2672.1993.tb01587.x. [DOI] [PubMed] [Google Scholar]
  5. Ellison A., Anderson W., Cole M. B., Stewart G. S. Modelling the thermal inactivation of Salmonella typhimurium using bioluminescence data. Int J Food Microbiol. 1994 Nov;23(3-4):467–477. doi: 10.1016/0168-1605(94)90170-8. [DOI] [PubMed] [Google Scholar]
  6. Ellison A., Perry S. F., Stewart G. S. Bioluminescence as a real-time monitor of injury and recovery in Salmonella typhimurium. Int J Food Microbiol. 1991 Apr;12(4):323–332. doi: 10.1016/0168-1605(91)90146-g. [DOI] [PubMed] [Google Scholar]
  7. Galdiereo E., Donnarumma G., de Martino L., Marcatili A., de l'Ero G. C., Merone A. Effect of low-nutrient seawater on morphology, chemical composition, and virulence of Salmonella typhimurium. Arch Microbiol. 1994;162(1-2):41–47. doi: 10.1007/BF00264371. [DOI] [PubMed] [Google Scholar]
  8. Heitzer A., Malachowsky K., Thonnard J. E., Bienkowski P. R., White D. C., Sayler G. S. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol. 1994 May;60(5):1487–1494. doi: 10.1128/aem.60.5.1487-1494.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol. 1991 Dec;173(24):7918–7924. doi: 10.1128/jb.173.24.7918-7924.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hill P. J., Rees C. E., Winson M. K., Stewart G. S. The application of lux genes. Biotechnol Appl Biochem. 1993 Feb;17(Pt 1):3–14. [PubMed] [Google Scholar]
  11. Jassim S. A., Ellison A., Denyer S. P., Stewart G. S. In vivo bioluminescence: a cellular reporter for research and industry. J Biolumin Chemilumin. 1990 Apr-Jun;5(2):115–122. doi: 10.1002/bio.1170050207. [DOI] [PubMed] [Google Scholar]
  12. Juven B. J., Kanner J., Schved F., Weisslowicz H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol. 1994 Jun;76(6):626–631. doi: 10.1111/j.1365-2672.1994.tb01661.x. [DOI] [PubMed] [Google Scholar]
  13. Kjelleberg S., Hermansson M. Starvation-induced effects on bacterial surface characteristics. Appl Environ Microbiol. 1984 Sep;48(3):497–503. doi: 10.1128/aem.48.3.497-503.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Luby S., Jones J. Outbreak of gastroenteritis due to Salmonella enteritidis from locally produced grade A eggs, South Carolina. South Med J. 1993 Dec;86(12):1350–1353. doi: 10.1097/00007611-199312000-00005. [DOI] [PubMed] [Google Scholar]
  15. Mackey B. M., Cross D., Park S. F. Thermostability of bacterial luciferase expressed in different microbes. J Appl Bacteriol. 1994 Aug;77(2):149–154. doi: 10.1111/j.1365-2672.1994.tb03058.x. [DOI] [PubMed] [Google Scholar]
  16. Marincs F., White D. W. Immobilization of Escherichia coli expressing the lux genes of Xenorhabdus luminescens. Appl Environ Microbiol. 1994 Oct;60(10):3862–3863. doi: 10.1128/aem.60.10.3862-3863.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McEldowney S. Effect of cadmium and zinc on attachment and detachment interactions of Pseudomonas fluorescens H2 with glass. Appl Environ Microbiol. 1994 Aug;60(8):2759–2765. doi: 10.1128/aem.60.8.2759-2765.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meighen E. A., Dunlap P. V. Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol. 1993;34:1–67. doi: 10.1016/s0065-2911(08)60027-2. [DOI] [PubMed] [Google Scholar]
  19. Mishu B., Koehler J., Lee L. A., Rodrigue D., Brenner F. H., Blake P., Tauxe R. V. Outbreaks of Salmonella enteritidis infections in the United States, 1985-1991. J Infect Dis. 1994 Mar;169(3):547–552. doi: 10.1093/infdis/169.3.547. [DOI] [PubMed] [Google Scholar]
  20. Morse D. L., Birkhead G. S., Guardino J., Kondracki S. F., Guzewich J. J. Outbreak and sporadic egg-associated cases of Salmonella enteritidis: New York's experience. Am J Public Health. 1994 May;84(5):859–860. doi: 10.2105/ajph.84.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicoletti G., Boghossian V., Gurevitch F., Borland R., Morgenroth P. The antimicrobial activity in vitro of chlorhexidine, a mixture of isothiazolinones ('Kathon' CG) and cetyl trimethyl ammonium bromide (CTAB). J Hosp Infect. 1993 Feb;23(2):87–111. doi: 10.1016/0195-6701(93)90014-q. [DOI] [PubMed] [Google Scholar]
  22. Piette J. P., Idziak E. S. A model study of factors involved in adhesion of Pseudomonas fluorescens to meat. Appl Environ Microbiol. 1992 Sep;58(9):2783–2791. doi: 10.1128/aem.58.9.2783-2791.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pyle B. H., Watters S. K., McFeters G. A. Physiological aspects of disinfection resistance in Pseudomonas cepacia. J Appl Bacteriol. 1994 Feb;76(2):142–148. doi: 10.1111/j.1365-2672.1994.tb01609.x. [DOI] [PubMed] [Google Scholar]
  24. Thiagarajan D., Saeed A. M., Asem E. K. Mechanism of transovarian transmission of Salmonella enteritidis in laying hens. Poult Sci. 1994 Jan;73(1):89–98. doi: 10.3382/ps.0730089. [DOI] [PubMed] [Google Scholar]
  25. Usera M. A., Popovic T., Bopp C. A., Strockbine N. A. Molecular subtyping of Salmonella enteritidis phage type 8 strains from the United States. J Clin Microbiol. 1994 Jan;32(1):194–198. doi: 10.1128/jcm.32.1.194-198.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van Dyk T. K., Majarian W. R., Konstantinov K. B., Young R. M., Dhurjati P. S., LaRossa R. A. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol. 1994 May;60(5):1414–1420. doi: 10.1128/aem.60.5.1414-1420.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Walker A. J., Holah J. T., Denyer S. P., Stewart G. S. The antibacterial activity of Virkon measured by colony growth and bioluminescence of lux recombinant Listeria monocytogenes. Lett Appl Microbiol. 1992 Aug;15(2):80–82. doi: 10.1111/j.1472-765x.1992.tb00730.x. [DOI] [PubMed] [Google Scholar]
  28. Walker A. J., Jassim S. A., Holah J. T., Denyer S. P., Stewart G. S. Bioluminescent Listeria monocytogenes provide a rapid assay for measuring biocide efficacy. FEMS Microbiol Lett. 1992 Mar 15;70(3):251–255. doi: 10.1016/0378-1097(92)90706-t. [DOI] [PubMed] [Google Scholar]
  29. Yu F. P., McFeters G. A. Physiological responses of bacteria in biofilms to disinfection. Appl Environ Microbiol. 1994 Jul;60(7):2462–2466. doi: 10.1128/aem.60.7.2462-2466.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES