Abstract
Two laccase isozymes (I and II) produced by the white-rot fungus Trametes versicolor were purified, and their reactivities towards various substrates and lignins were studied. The N-terminal amino acid sequences of these enzymes were determined and compared to other known laccase sequences. Laccase II showed a very high sequence similarity to a laccase which was previously reported to depolymerize lignin. The reactivities of the two isozymes on most of the substrates tested were similar, but there were some differences in the oxidation rate of polymeric substrates. We found that the two laccases produced similar qualitative effects on kraft lignin and residual lignin in kraft pulp, with no evidence of a marked preference for depolymerization by either enzyme. However, the presence of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) prevented and reversed the polymerization of kraft lignin by either laccase. The delignification of hardwood and softwood kraft pulps with the two isozymes and the mediator was compared; either laccase was able to reduce the kappa number of pulp, but only in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate).
Full Text
The Full Text of this article is available as a PDF (204.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addleman K., Archibald F. Kraft Pulp Bleaching and Delignification by Dikaryons and Monokaryons of Trametes versicolor. Appl Environ Microbiol. 1993 Jan;59(1):266–273. doi: 10.1128/aem.59.1.266-273.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourbonnais R., Paice M. G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990 Jul 2;267(1):99–102. doi: 10.1016/0014-5793(90)80298-w. [DOI] [PubMed] [Google Scholar]
- Coll P. M., Tabernero C., Santamaría R., Pérez P. Characterization and structural analysis of the laccase I gene from the newly isolated ligninolytic basidiomycete PM1 (CECT 2971). Appl Environ Microbiol. 1993 Dec;59(12):4129–4135. doi: 10.1128/aem.59.12.4129-4135.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fåhraeus G., Reinhammar B. Large scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A. Acta Chem Scand. 1967;21(9):2367–2378. doi: 10.3891/acta.chem.scand.21-2367. [DOI] [PubMed] [Google Scholar]
- Glenn J. K., Gold M. H. Decolorization of Several Polymeric Dyes by the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1983 Jun;45(6):1741–1747. doi: 10.1128/aem.45.6.1741-1747.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kern H. W., Kirk T. K. Influence of Molecular Size and Ligninase Pretreatment on Degradation of Lignins by Xanthomonas sp. Strain 99. Appl Environ Microbiol. 1987 Sep;53(9):2242–2246. doi: 10.1128/aem.53.9.2242-2246.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kojima Y., Tsukuda Y., Kawai Y., Tsukamoto A., Sugiura J., Sakaino M., Kita Y. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem. 1990 Sep 5;265(25):15224–15230. [PubMed] [Google Scholar]
- Perry C. R., Smith M., Britnell C. H., Wood D. A., Thurston C. F. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J Gen Microbiol. 1993 Jun;139(Pt 6):1209–1218. doi: 10.1099/00221287-139-6-1209. [DOI] [PubMed] [Google Scholar]
- Saloheimo M., Niku-Paavola M. L., Knowles J. K. Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J Gen Microbiol. 1991 Jul;137(7):1537–1544. doi: 10.1099/00221287-137-7-1537. [DOI] [PubMed] [Google Scholar]