Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 May;61(5):1904–1909. doi: 10.1128/aem.61.5.1904-1909.1995

Activation of plasma membrane H(+)-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures.

C A Viegas 1, P B Sebastião 1, A G Nunes 1, I Sá-Correia 1
PMCID: PMC167452  PMID: 7646027

Abstract

During exponential growth at temperatures of 30 to 39 degrees C, the specific activity of H(+)-ATPase in the plasma membrane of Saccharomyces cerevisiae (assayed at the standard temperature 30 degrees C) increased with increases in growth temperature. In addition, the optimal temperature for in vitro activity of this ATPase was 42 degrees C. Therefore, the maximum values of ATPase activity were expected to occur in cells that grew within the supraoptimal range of temperatures. Activation induced by supraoptimal temperatures was not the result of increased synthesis of this membrane enzyme. When the growth temperature increased from 30 to 40 degrees C, expression of the essential PMA1 gene, monitored either by the level of PMA1 mRNA or the beta-galactosidase activity of the lacZ-PMA1 fusion, was reduced. Consistently, quantitative immunoassays showed that the ATPase content in the plasma membrane decreased. Like ATPase activity, the efficiency of the PMA2 promoter increased with increases in growth temperature in cells that had been grown at 30 to 39 degrees C, but its level of expression was several hundred-fold lower than that of PMA1. These results suggest that the major PMA1 ATPase is activated at supraoptimal temperatures.

Full Text

The Full Text of this article is available as a PDF (249.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benito B., Portillo F., Lagunas R. In vivo activation of the yeast plasma membrane ATPase during nitrogen starvation. Identification of the regulatory domain that controls activation. FEBS Lett. 1992 Apr 6;300(3):271–274. doi: 10.1016/0014-5793(92)80861-a. [DOI] [PubMed] [Google Scholar]
  2. Benschoter A. S., Ingram L. O. Thermal Tolerance of Zymomonas mobilis: Temperature-Induced Changes in Membrane Composition. Appl Environ Microbiol. 1986 Jun;51(6):1278–1284. doi: 10.1128/aem.51.6.1278-1284.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Capieaux E., Vignais M. L., Sentenac A., Goffeau A. The yeast H+-ATPase gene is controlled by the promoter binding factor TUF. J Biol Chem. 1989 May 5;264(13):7437–7446. [PubMed] [Google Scholar]
  5. Chang A., Slayman C. W. Maturation of the yeast plasma membrane [H+]ATPase involves phosphorylation during intracellular transport. J Cell Biol. 1991 Oct;115(2):289–295. doi: 10.1083/jcb.115.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coote P. J., Cole M. B., Jones M. V. Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J Gen Microbiol. 1991 Jul;137(7):1701–1708. doi: 10.1099/00221287-137-7-1701. [DOI] [PubMed] [Google Scholar]
  7. Goffeau A., Slayman C. W. The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta. 1981 Dec 30;639(3-4):197–223. doi: 10.1016/0304-4173(81)90010-0. [DOI] [PubMed] [Google Scholar]
  8. Jazwinski S. M. Preparation of extracts from yeast. Methods Enzymol. 1990;182:154–174. doi: 10.1016/0076-6879(90)82015-t. [DOI] [PubMed] [Google Scholar]
  9. Kolarov J., Kulpa J., Baijot M., Goffeau A. Characterization of a protein serine kinase from yeast plasma membrane. J Biol Chem. 1988 Aug 5;263(22):10613–10619. [PubMed] [Google Scholar]
  10. Lloyd D., Morrell S., Carlsen H. N., Degn H., James P. E., Rowlands C. C. Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae. Yeast. 1993 Aug;9(8):825–833. doi: 10.1002/yea.320090803. [DOI] [PubMed] [Google Scholar]
  11. Mager W. H., Ferreira P. M. Stress response of yeast. Biochem J. 1993 Feb 15;290(Pt 1):1–13. doi: 10.1042/bj2900001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Monteiro G. A., Supply P., Goffeau A., Sá-Correia I. The in vivo activation of Saccharomyces cerevisiae plasma membrane H(+)-ATPase by ethanol depends on the expression of the PMA1 gene, but not of the PMA2 gene. Yeast. 1994 Nov;10(11):1439–1446. doi: 10.1002/yea.320101107. [DOI] [PubMed] [Google Scholar]
  13. Panaretou B., Piper P. W. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem. 1992 Jun 15;206(3):635–640. doi: 10.1111/j.1432-1033.1992.tb16968.x. [DOI] [PubMed] [Google Scholar]
  14. Patton J. L., Lester R. L. Phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, and the phosphoinositol sphingolipids are found in the plasma membrane and stimulate the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. Arch Biochem Biophys. 1992 Jan;292(1):70–76. doi: 10.1016/0003-9861(92)90052-x. [DOI] [PubMed] [Google Scholar]
  15. Perlin D. S., Brown C. L. Identification of structurally distinct catalytic intermediates of the H+-ATPase from yeast plasma membranes. J Biol Chem. 1987 May 15;262(14):6788–6794. [PubMed] [Google Scholar]
  16. Portillo F., Eraso P., Serrano R. Analysis of the regulatory domain of yeast plasma membrane H+-ATPase by directed mutagenesis and intragenic suppression. FEBS Lett. 1991 Aug 5;287(1-2):71–74. doi: 10.1016/0014-5793(91)80018-x. [DOI] [PubMed] [Google Scholar]
  17. Rao R., Drummond-Barbosa D., Slayman C. W. Transcriptional regulation by glucose of the yeast PMA1 gene encoding the plasma membrane H(+)-ATPase. Yeast. 1993 Oct;9(10):1075–1084. doi: 10.1002/yea.320091006. [DOI] [PubMed] [Google Scholar]
  18. Rosa M. F., Sá-Correia I. In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl Environ Microbiol. 1991 Mar;57(3):830–835. doi: 10.1128/aem.57.3.830-835.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salgueiro S. P., Sá-Correia I., Novais J. M. Ethanol-Induced Leakage in Saccharomyces cerevisiae: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity. Appl Environ Microbiol. 1988 Apr;54(4):903–909. doi: 10.1128/aem.54.4.903-909.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schlesser A., Ulaszewski S., Ghislain M., Goffeau A. A second transport ATPase gene in Saccharomyces cerevisiae. J Biol Chem. 1988 Dec 25;263(36):19480–19487. [PubMed] [Google Scholar]
  21. Schmitt M. E., Brown T. A., Trumpower B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990 May 25;18(10):3091–3092. doi: 10.1093/nar/18.10.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Serrano R. In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett. 1983 May 30;156(1):11–14. doi: 10.1016/0014-5793(83)80237-3. [DOI] [PubMed] [Google Scholar]
  23. Serrano R., Kielland-Brandt M. C., Fink G. R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature. 1986 Feb 20;319(6055):689–693. doi: 10.1038/319689a0. [DOI] [PubMed] [Google Scholar]
  24. Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta. 1988 Feb 24;947(1):1–28. doi: 10.1016/0304-4157(88)90017-2. [DOI] [PubMed] [Google Scholar]
  25. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sinigaglia M., Gardini F., Guerzoni M. E. Relationship between thermal behaviour, fermentation performance and fatty acid composition in two strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1993 Jul;39(4-5):593–598. doi: 10.1007/BF00205058. [DOI] [PubMed] [Google Scholar]
  27. Supply P., Wach A., Thinès-Sempoux D., Goffeau A. Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae. J Biol Chem. 1993 Sep 15;268(26):19744–19752. [PubMed] [Google Scholar]
  28. Viegas C. A., Supply P., Capieaux E., Van Dyck L., Goffeau A., Sá-Correia I. Regulation of the expression of the H(+)-ATPase genes PMA1 and PMA2 during growth and effects of octanoic acid in Saccharomyces cerevisiae. Biochim Biophys Acta. 1994 Jan 18;1217(1):74–80. [PubMed] [Google Scholar]
  29. Viegas C. A., Sá-Correia I. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol. 1991 Mar;137(3):645–651. doi: 10.1099/00221287-137-3-645. [DOI] [PubMed] [Google Scholar]
  30. Wach A., Ahlers J., Gräber P. The H(+)-ATPase of the plasma membrane from yeast. Kinetics of ATP hydrolysis in native membranes, isolated and reconstituted enzymes. Eur J Biochem. 1990 May 20;189(3):675–682. doi: 10.1111/j.1432-1033.1990.tb15536.x. [DOI] [PubMed] [Google Scholar]
  31. Weitzel G., Pilatus U., Rensing L. The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast. Exp Cell Res. 1987 May;170(1):64–79. doi: 10.1016/0014-4827(87)90117-0. [DOI] [PubMed] [Google Scholar]
  32. van Uden N. Temperature profiles of yeasts. Adv Microb Physiol. 1984;25:195–251. doi: 10.1016/s0065-2911(08)60293-3. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES