Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 May;61(5):1953–1958. doi: 10.1128/aem.61.5.1953-1958.1995

Purification and characterization of the Bacillus subtilis levanase produced in Escherichia coli.

E Wanker 1, A Huber 1, H Schwab 1
PMCID: PMC167457  PMID: 7646030

Abstract

The enzyme levanase encoded by the sacC gene from Bacillus subtilis was overexpressed in Escherichia coli with the strong, inducible tac promoter. The enzyme was purified from crude E. coli cell lysates by salting out with ammonium sulfate and chromatography on DEAE-Sepharose CL-6B, S-Sepharose, and MonoQ-Sepharose. The purified protein had an apparent molecular mass of 75,000 Da in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which is in agreement with that expected from the nucleotide sequence. Levanase was active on levan, inulin, and sucrose with Km values of 1.2 microM, 6.8 mM, and 65 mM, respectively. The pH optimum of the enzyme acting on inulin was 5.5, and the temperature optimum was 55 degrees C. Levanase was rapidly inactivated at 60 degrees C, but activity could be retained for longer times by adding fructose or glycerol. The enzyme activity was completely inactivated by Ag+ and Hg2+ ions, indicating that a sulfhydryl group is involved. A ratio of sucrase to inulinase activity of 1.2 was found for the purified enzyme with substrate concentrations of 50 mg/ml. The mechanism of enzyme action was investigated. No liberation of fructo-oligomers from inulin and levan could be observed by thin-layer chromatography and size exclusion chromatography-low-angle laser light scattering-interferometric differential refractive index techniques. This indicates that levanase is an exoenzyme acting by the single-chain mode.

Full Text

The Full Text of this article is available as a PDF (227.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins G. L., Nimmo I. A. A comparison of seven methods for fitting the Michaelis-Menten equation. Biochem J. 1975 Sep;149(3):775–777. doi: 10.1042/bj1490775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Burne R. A., Schilling K., Bowen W. H., Yasbin R. E. Expression, purification, and characterization of an exo-beta-D-fructosidase of Streptococcus mutans. J Bacteriol. 1987 Oct;169(10):4507–4517. doi: 10.1128/jb.169.10.4507-4517.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edelman J., Jefford T. G. The metabolism of fructose polymers in plants. 4. Beta-fructofuranosidases of tubers of Helianthus tuberosus L. Biochem J. 1964 Oct;93(1):148–161. doi: 10.1042/bj0930148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ettalibi M., Baratti J. C. Molecular and kinetic properties of Aspergillus ficuum inulinases. Agric Biol Chem. 1990 Jan;54(1):61–68. [PubMed] [Google Scholar]
  7. Igarashi T., Takahashi M., Yamamoto A., Etoh Y., Takamori K. Purification and characterization of levanase from Actinomyces viscosus ATCC 19246. Infect Immun. 1987 Dec;55(12):3001–3005. doi: 10.1128/iai.55.12.3001-3005.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kunst F., Steinmetz M., Lepesant J. A., Dedonder R. Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilis Marburg 168. Biochimie. 1977;59(3):289–292. [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Laloux O., Cassart J. P., Delcour J., Van Beeumen J., Vandenhaute J. Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett. 1991 Sep 2;289(1):64–68. doi: 10.1016/0014-5793(91)80909-m. [DOI] [PubMed] [Google Scholar]
  11. Martin I., Debarbouille M., Klier A., Rapoport G. Induction and metabolite regulation of levanase synthesis in Bacillus subtilis. J Bacteriol. 1989 Apr;171(4):1885–1892. doi: 10.1128/jb.171.4.1885-1892.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Martin I., Débarbouillé M., Ferrari E., Klier A., Rapoport G. Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol Gen Genet. 1987 Jun;208(1-2):177–184. doi: 10.1007/BF00330439. [DOI] [PubMed] [Google Scholar]
  13. Miller C. H., Somers P. J. Degradation of levan by Actinomyces viscosus. Infect Immun. 1978 Oct;22(1):266–274. doi: 10.1128/iai.22.1.266-274.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rouwenhorst R. J., Hensing M., Verbakel J., Scheffers W. A., van Duken J. P. Structure and properties of the extracellular inulinase of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol. 1990 Nov;56(11):3337–3345. doi: 10.1128/aem.56.11.3337-3345.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rouwenhorst R. J., Ritmeester W. S., Scheffers W. A., Van Dijken J. P. Localization of inulinase and invertase in Kluyveromyces species. Appl Environ Microbiol. 1990 Nov;56(11):3329–3336. doi: 10.1128/aem.56.11.3329-3336.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SNYDER H. E., PHAFF H. J. The pattern of action of inulinase from Saccharomyces fragilis on inulin. J Biol Chem. 1962 Aug;237:2438–2441. [PubMed] [Google Scholar]
  17. Schörgendorfer K., Schwab H., Lafferty R. M. Nucleotide sequence of a cloned 2.5 kb PstI--EcoRI Bacillus subtilis DNA fragment coding for levanase. Nucleic Acids Res. 1987 Nov 25;15(22):9606–9606. doi: 10.1093/nar/15.22.9606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Takahashi N., Mizuno F., Takamori K. Isolation and properties of levanase from Streptococcus salivarius KTA-19. Infect Immun. 1983 Oct;42(1):231–236. doi: 10.1128/iai.42.1.231-236.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Takahashi N., Mizuno F., Takamori K. Purification and preliminary characterization of exo-beta-D-fructosidase in Streptococcus salivarius KTA-19. Infect Immun. 1985 Jan;47(1):271–276. doi: 10.1128/iai.47.1.271-276.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taussig R., Carlson M. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res. 1983 Mar 25;11(6):1943–1954. doi: 10.1093/nar/11.6.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Uchiyama T. Action of Arthrobacter ureafaciens inulinase II on several oligofructans and bacterial levans. Biochim Biophys Acta. 1975 Jul 27;397(1):153–163. doi: 10.1016/0005-2744(75)90189-8. [DOI] [PubMed] [Google Scholar]
  22. Vandamme E. J., Derycke D. G. Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol. 1983;29:139–176. doi: 10.1016/s0065-2164(08)70356-3. [DOI] [PubMed] [Google Scholar]
  23. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wanker E., Schörgendorfer K., Schwab H. Expression of the Bacillus subtilis levanase gene in Escherichia coli and Saccharomyces cerevisiae. J Biotechnol. 1991 May;18(3):243–254. doi: 10.1016/0168-1656(91)90251-p. [DOI] [PubMed] [Google Scholar]
  25. Yanase H., Fukushi H., Ueda N., Maeda Y., Toyoda A., Tonomura K. Cloning, sequencing, and characterization of the intracellular invertase gene from Zymomonas mobilis. Agric Biol Chem. 1991 May;55(5):1383–1390. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES