Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 May;61(5):1987–1995. doi: 10.1128/aem.61.5.1987-1995.1995

A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat.

S Katupitiya 1, J Millet 1, M Vesk 1, L Viccars 1, A Zeman 1, Z Lidong 1, C Elmerich 1, I R Kennedy 1
PMCID: PMC167461  PMID: 7646034

Abstract

We report here significant phenotypic and genetic differences between Azospirillum brasilense Sp7 and spontaneous mutant Sp7-S and their related properties in association with wheat. In contrast to the wild-type strain of Sp7, colonies of Sp7-S stained weakly with Congo red when grown on agar media containing the dye and did not flocculate in the presence of fructose and nitrate. Scanning and transmission electron micrographs showed clearly that the Sp7-S strain lacked surface materials present as a thick layer on the surface of the wild-type Sp7 strain. Different patterns of colonization on wheat roots between Sp7 and Sp7-S, revealed by in situ studies using nifA-lacZ as a reporter gene, were related to a large increase in nitrogenase activity (acetylene reduction) with Sp7-S in association with normal and 2,4-dichlorophenoxyacetic acid-treated wheat for assays conducted under conditions in which the nitrogenase activity of free-living Azospirillum organisms was inhibited by an excess of oxygen. Randomly amplified polymorphic DNA analysis indicated the close genetic relationship of Sp7-S to several other sources of Sp7, by comparison to other recognized strains of A. brasilense. Genetic complementation of Sp7-S was achieved with a 9.4-kb fragment of DNA cloned from wild-type Sp7, restoring Congo red staining and flocculation.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg R. H., Tyler M. E., Novick N. J., Vasil V., Vasil I. K. Biology of azospirillum-sugarcane association: enhancement of nitrogenase activity. Appl Environ Microbiol. 1980 Mar;39(3):642–649. doi: 10.1128/aem.39.3.642-649.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bleakley B. H., Gaskins M. H., Hubbell D. H., Zam S. G. Floc Formation by Azospirillum lipoferum Grown on Poly-beta-Hydroxybutyrate. Appl Environ Microbiol. 1988 Dec;54(12):2986–2995. doi: 10.1128/aem.54.12.2986-2995.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bozouklian H., Fogher C., Elmerich C. Cloning and characterization of the glnA gene of Azospirillum brasilense Sp7. Ann Inst Pasteur Microbiol. 1986 Jul-Aug;137B(1):3–18. doi: 10.1016/s0769-2609(86)80089-8. [DOI] [PubMed] [Google Scholar]
  4. Del Gallo M., Negi M., Neyra C. A. Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J Bacteriol. 1989 Jun;171(6):3504–3510. doi: 10.1128/jb.171.6.3504-3510.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. doi: 10.1073/pnas.77.12.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eskew D. L., Focht D. D., Ting I. P. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl Environ Microbiol. 1977 Nov;34(5):582–585. doi: 10.1128/aem.34.5.582-585.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fani R., Damiani G., Di Serio C., Gallori E., Grifoni A., Bazzicalupo M. Use of random amplified polymorphic DNA (RAPD) for generating specific DNA probes for microorganisms. Mol Ecol. 1993 Aug;2(4):243–250. doi: 10.1111/j.1365-294x.1993.tb00014.x. [DOI] [PubMed] [Google Scholar]
  8. Fekete A., Bantle J. A., Halling S. M., Stich R. W. Amplification fragment length polymorphism in Brucella strains by use of polymerase chain reaction with arbitrary primers. J Bacteriol. 1992 Dec;174(23):7778–7783. doi: 10.1128/jb.174.23.7778-7783.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Franche C., Elmerich C. Physiological properties and plasmid content of several strains of Azospirillum brasilense and A. lipoferum. Ann Microbiol (Paris) 1981 Jan-Feb;132A(1):3–18. [PubMed] [Google Scholar]
  10. Galimand M., Perroud B., Delorme F., Paquelin A., Vieille C., Bozouklian H., Elmerich C. Identification of DNA regions homologous to nitrogen fixation genes nifE, nifUS and fixABC in Azospirillum brasilense Sp7. J Gen Microbiol. 1989 May;135(5):1047–1059. doi: 10.1099/00221287-135-5-1047. [DOI] [PubMed] [Google Scholar]
  11. Harrison S. P., Mytton L. R., Skøt L., Dye M., Cresswell A. Characterisation of Rhizobium isolates by amplification of DNA polymorphisms using random primers. Can J Microbiol. 1992 Oct;38(10):1009–1015. doi: 10.1139/m92-166. [DOI] [PubMed] [Google Scholar]
  12. Knauf V. C., Nester E. W. Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid. 1982 Jul;8(1):45–54. doi: 10.1016/0147-619x(82)90040-3. [DOI] [PubMed] [Google Scholar]
  13. Leigh J. A., Coplin D. L. Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol. 1992;46:307–346. doi: 10.1146/annurev.mi.46.100192.001515. [DOI] [PubMed] [Google Scholar]
  14. Leigh J. A., Signer E. R., Walker G. C. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6231–6235. doi: 10.1073/pnas.82.18.6231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liang Y. Y., Kaminski P. A., Elmerich C. Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia. Mol Microbiol. 1991 Nov;5(11):2735–2744. doi: 10.1111/j.1365-2958.1991.tb01982.x. [DOI] [PubMed] [Google Scholar]
  16. Long S., Reed J. W., Himawan J., Walker G. C. Genetic analysis of a cluster of genes required for synthesis of the calcofluor-binding exopolysaccharide of Rhizobium meliloti. J Bacteriol. 1988 Sep;170(9):4239–4248. doi: 10.1128/jb.170.9.4239-4248.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Michiels K. W., Vanderleyden J., Van Gool A. P., Signer E. R. Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutations. J Bacteriol. 1988 Nov;170(11):5401–5404. doi: 10.1128/jb.170.11.5401-5404.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Michiels K., De Troch P., Onyeocha I., Van Gool A., Elmerich C., Vanderleyden J. Plasmid localization and mapping of two Azospirillum brasilense loci that affect exopolysaccharide synthesis. Plasmid. 1989 Mar;21(2):142–146. doi: 10.1016/0147-619x(89)90058-9. [DOI] [PubMed] [Google Scholar]
  19. Onyeocha I., Vieille C., Zimmer W., Baca B. E., Flores M., Palacios R., Elmerich C. Physical map and properties of a 90-MDa plasmid of Azospirillum brasilense Sp7. Plasmid. 1990 May;23(3):169–182. doi: 10.1016/0147-619x(90)90049-i. [DOI] [PubMed] [Google Scholar]
  20. Puvanesarajah V., Schell F. M., Stacey G., Douglas C. J., Nester E. W. Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol. 1985 Oct;164(1):102–106. doi: 10.1128/jb.164.1.102-106.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sadasivan L., Neyra C. A. Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145. J Bacteriol. 1987 Apr;169(4):1670–1677. doi: 10.1128/jb.169.4.1670-1677.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sadasivan L., Neyra C. A. Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol. 1985 Aug;163(2):716–723. doi: 10.1128/jb.163.2.716-723.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tarrand J. J., Krieg N. R., Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol. 1978 Aug;24(8):967–980. doi: 10.1139/m78-160. [DOI] [PubMed] [Google Scholar]
  24. Umali-Garcia M., Hubbell D. H., Gaskins M. H., Dazzo F. B. Association of azospirillum with grass roots. Appl Environ Microbiol. 1980 Jan;39(1):219–226. doi: 10.1128/aem.39.1.219-226.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. Nucleotide sequence of the AIDS virus, LAV. Cell. 1985 Jan;40(1):9–17. doi: 10.1016/0092-8674(85)90303-4. [DOI] [PubMed] [Google Scholar]
  26. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zeman A. M., Tchan Y. T., Elmerich C., Kennedy I. R. Nitrogenase activity in wheat seedlings bearing para-nodules induced by 2,4-dichlorophenoxyacetic acid (2,4-D) and inoculated with Azospirillum. Res Microbiol. 1992 Nov-Dec;143(9):847–855. doi: 10.1016/0923-2508(92)90072-v. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES