Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jun;61(6):2425–2427. doi: 10.1128/aem.61.6.2425-2427.1995

Enhanced fermentation of mannitol and release of cytotoxin by Clostridium difficile in alkaline culture media.

M T Kazamias 1, J F Sperry 1
PMCID: PMC167515  PMID: 7793964

Abstract

Clostridium difficile ATCC 43255 fermented less than 10% of the mannitol in a medium at pH 7; however, when the initial pH of the medium was adjusted to 8.5 or 9, about 80% of the mannitol was fermented. Cell extracts of C. difficile phosphorylated mannitol with phosphoenolpyruvate, not ATP, indicating a phosphoenolpyruvate phosphotransferase system transport phosphorylation of mannitol. The phosphorylation product was dehydrogenated by D-mannitol-1-phosphate:NAD oxidoreductase. Growth at an initial pH of 8.5 yielded cytotoxin titers of 10(7) to 10(8) in Trypticase-yeast extract-mannitol medium, wit a titer of 10(8) as early as 13 h.

Full Text

The Full Text of this article is available as a PDF (220.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eisenberg R. C., Dobrogosz W. J. Gluconate metabolism in Escherichia coli. J Bacteriol. 1967 Mar;93(3):941–949. doi: 10.1128/jb.93.3.941-949.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HARDMAN J. K., STADTMAN T. C. Metabolism of omega-amino acids. I. Fermentation of gamma-aminobutyric acid by Clostridium aminobutyricum n. sp. J Bacteriol. 1960 Apr;79:544–548. doi: 10.1128/jb.79.4.544-548.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HORWITZ S. B., KAPLAN N. O. HEXITOL DEHYDROGENASES OF BACILLUS SUBTILIS. J Biol Chem. 1964 Mar;239:830–838. [PubMed] [Google Scholar]
  4. Katoh T., Honda T., Miwatani T. Purification and some properties of cytotoxin produced by Clostridium difficile. Microbiol Immunol. 1988;32(6):551–564. doi: 10.1111/j.1348-0421.1988.tb01417.x. [DOI] [PubMed] [Google Scholar]
  5. Ketley J. M., Haslam S. C., Mitchell T. J., Stephen J., Candy D. C., Burdon D. W. Production and release of toxins A and B by Clostridium difficile. J Med Microbiol. 1984 Dec;18(3):385–391. doi: 10.1099/00222615-18-3-385. [DOI] [PubMed] [Google Scholar]
  6. LISS M., HORWITZ S. B., KAPLAN N. O. D-Mannitol 1-phosphate dehydrogenase and D-sorbitol 6-phosphate dehydrogenase in Aerobacter aerogenes. J Biol Chem. 1962 Apr;237:1342–1350. [PubMed] [Google Scholar]
  7. MARMUR J., HOTCHKISS R. D. Mannitol metabolism, a transferable property of pneumococcus. J Biol Chem. 1955 May;214(1):383–396. [PubMed] [Google Scholar]
  8. MURPHEY W. H., ROSENBLUM E. D. MANNITOL CATABOLISM BY STAPHYLOCOCCUS AUREUS. Arch Biochem Biophys. 1964 Aug;107:292–297. doi: 10.1016/0003-9861(64)90332-7. [DOI] [PubMed] [Google Scholar]
  9. Patni N. J., Alexander J. K. Catabolism of fructose and mannitol in Clostridium thermocellum: presence of phosphoenolpyruvate: fructose phosphotransferase, fructose 1-phosphate kinase, phosphoenolpyruvate: mannitol phosphotransferase, and mannitol 1-phosphate dehydrogenase in cell extracts. J Bacteriol. 1971 Jan;105(1):226–231. doi: 10.1128/jb.105.1.226-231.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rolfe R. D., Finegold S. M. Purification and characterization of Clostridium difficile toxin. Infect Immun. 1979 Jul;25(1):191–201. doi: 10.1128/iai.25.1.191-201.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sperry J. F., Wilkins T. D. Arginine, a growth-limiting factor for Eubacterium lentum. J Bacteriol. 1976 Aug;127(2):780–784. doi: 10.1128/jb.127.2.780-784.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES