Abstract
The gene encoding a conjugated bile acid hydrolase (CBAH) from Clostridium perfringens 13 has been cloned and expressed in Escherichia coli, and its nucleotide sequence has been determined. Nucleotide and predicted amino acid sequence analyses indicated that the gene product is related to two previously characterized amidases, a CBAH from Lactobacillus plantarum (40% identity) and a penicillin V amidase from Bacillus sphaericus (34% identity). The product is apparently unrelated to a CBAH from C. perfringens for which N-terminal sequence information was determined. The gene product was purified from recombinant E. coli and used to raise antibody in rabbits. The presence of the protein in C. perfringens was then confirmed by immunoblot analysis. The protein was shown to have a native molecular weight of 147,000 and a subunit molecular weight of 36,100, indicating its probable existence as a tetramer. Disruption of the chromosomal C. perfringens CBAH gene with a chloramphenicol resistance cartridge resulted in a mutant strain which retained partial CBAH activity. Polyacrylamide gel electrophoresis followed by enzymatic activity staining and immunoblotting indicated that the mutant strain no longer expressed the cloned CBAH (CBAH-1) but did express at least one additional CBAH (CBAH-2). CBAH-2 was immunologically distinct from CBAH-1, and its mobility on native polyacrylamide gels was different from that of CBAH-1. Furthermore, comparisons of pH optima and substrate specificities of CBAH activities from recombinant E. coli and wild-type and mutant C. perfringens provided further evidence for the presence of multiple CBAH activities in C. perfringens.
Full Text
The Full Text of this article is available as a PDF (401.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagheri S. A., Bolt M. G., Boyer J. L., Palmer R. H. Stimulation of thymidine incorporation in mouse liver and biliary tract epithelium by lithocholate and deoxycholate. Gastroenterology. 1978 Feb;74(2 Pt 1):188–192. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Catteau M., Henry M., Beerens H. Déconjugaison des sels biliaires par des bactéries des genres Bactéroides et Bifidobacterium. Ann Inst Pasteur Lille. 1971;22:201–205. [PubMed] [Google Scholar]
- Christiaens H., Leer R. J., Pouwels P. H., Verstraete W. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl Environ Microbiol. 1992 Dec;58(12):3792–3798. doi: 10.1128/aem.58.12.3792-3798.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dashkevicz M. P., Feighner S. D. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl Environ Microbiol. 1989 Jan;55(1):11–16. doi: 10.1128/aem.55.1.11-16.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietschy J. M. Bile acids: their absorption from the gastrointestinal tract and role during fat absorption. Verh Dtsch Ges Inn Med. 1974;80:399–407. doi: 10.1007/978-3-642-85449-1_97. [DOI] [PubMed] [Google Scholar]
- Drasar B. S., Hill M. J., Shiner M. The deconjugation of bile salts by human intestinal bacteria. Lancet. 1966 Jun 4;1(7449):1237–1238. doi: 10.1016/s0140-6736(66)90242-x. [DOI] [PubMed] [Google Scholar]
- Gilliland S. E., Speck M. L. Deconjugation of bile acids by intestinal lactobacilli. Appl Environ Microbiol. 1977 Jan;33(1):15–18. doi: 10.1128/aem.33.1.15-18.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gopal-Srivastava R., Hylemon P. B. Purification and characterization of bile salt hydrolase from Clostridium perfringens. J Lipid Res. 1988 Aug;29(8):1079–1085. [PubMed] [Google Scholar]
- Hill M. J., Drasar B. S. Degradation of bile salts by human intestinal bacteria. Gut. 1968 Feb;9(1):22–27. doi: 10.1136/gut.9.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirano S., Masuda N., Oda H., Mukai H. Transformation of bile acids by Clostridium perfringens. Appl Environ Microbiol. 1981 Sep;42(3):394–399. doi: 10.1128/aem.42.3.394-399.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawamoto K., Horibe I., Uchida K. Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxycholyltaurine hydrolase, from Bacteroides vulgatus. J Biochem. 1989 Dec;106(6):1049–1053. doi: 10.1093/oxfordjournals.jbchem.a122962. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lewis R., Gorbach S. Modification of bile acids by intestinal bacteria. Arch Intern Med. 1972 Oct;130(4):545–549. [PubMed] [Google Scholar]
- Lundeen S. G., Savage D. C. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100. J Bacteriol. 1990 Aug;172(8):4171–4177. doi: 10.1128/jb.172.8.4171-4177.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundeen S. G., Savage D. C. Multiple forms of bile salt hydrolase from Lactobacillus sp. strain 100-100. J Bacteriol. 1992 Nov;174(22):7217–7220. doi: 10.1128/jb.174.22.7217-7220.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahony D. E., Meier C. E., Macdonald I. A., Holdeman L. V. Bile salt degradation by nonfermentative clostridia. Appl Environ Microbiol. 1977 Oct;34(4):419–423. doi: 10.1128/aem.34.4.419-423.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masuda N. Deconjugation of bile salts by Bacteroids and Clostridium. Microbiol Immunol. 1981;25(1):1–11. doi: 10.1111/j.1348-0421.1981.tb00001.x. [DOI] [PubMed] [Google Scholar]
- Midtvedt T. Microbial bile acid transformation. Am J Clin Nutr. 1974 Nov;27(11):1341–1347. doi: 10.1093/ajcn/27.11.1341. [DOI] [PubMed] [Google Scholar]
- Midtvedt T., Norman A. Anaerobic, bile acid transforming microorganisms in rat intestinal content. Acta Pathol Microbiol Scand. 1968;72(2):337–344. doi: 10.1111/j.1699-0463.1968.tb01347.x. [DOI] [PubMed] [Google Scholar]
- Midtvedt T., Norman A. Bile acid transformations by microbial strains belonging to genera found in intestinal contents. Acta Pathol Microbiol Scand. 1967;71(4):629–638. doi: 10.1111/j.1699-0463.1967.tb05183.x. [DOI] [PubMed] [Google Scholar]
- Nair P. P., Gordon M., Gordon S., Reback J., Mendeloff A. I. The cleavage of bile acid conjugates by cell-free extracts from Clostridium perfringens. Life Sci. 1965 Oct;4(19):1887–1892. doi: 10.1016/0024-3205(65)90071-8. [DOI] [PubMed] [Google Scholar]
- Nair P. P., Gordon M., Reback J. The enzymatic cleavage of the carbon-nitrogen bond in 3-alpha, 7-alpha, 12-alpha-trihydroxy-5-beta-cholan-24-oylglycine. J Biol Chem. 1967 Jan 10;242(1):7–11. [PubMed] [Google Scholar]
- Nair P. P., Kessie G., Flanagan V. P. Reaffirmation of the validity of enzymatic cleavage of lithocholic acid from N-epsilon-lithocholyl-L-lysine and N-alpha-CBZ-N-epsilon-lithocholyl-L-lysine. J Lipid Res. 1986 Aug;27(8):905–909. [PubMed] [Google Scholar]
- Narisawa T., Magadia N. E., Weisburger J. H., Wynder E. L. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitrosoguanidine in rats. J Natl Cancer Inst. 1974 Oct;53(4):1093–1097. doi: 10.1093/jnci/53.4.1093. [DOI] [PubMed] [Google Scholar]
- Olsson A., Hagström T., Nilsson B., Uhlén M., Gatenbeck S. Molecular cloning of Bacillus sphaericus penicillin V amidase gene and its expression in Escherichia coli and Bacillus subtilis. Appl Environ Microbiol. 1985 May;49(5):1084–1089. doi: 10.1128/aem.49.5.1084-1089.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsson A., Uhlén M. Sequencing and heterologous expression of the gene encoding penicillin V amidase from Bacillus sphaericus. Gene. 1986;45(2):175–181. doi: 10.1016/0378-1119(86)90252-0. [DOI] [PubMed] [Google Scholar]
- Owen R. W. Biotransformation of bile acids by clostridia. J Med Microbiol. 1985 Oct;20(2):233–238. doi: 10.1099/00222615-20-2-233. [DOI] [PubMed] [Google Scholar]
- PLAYOUST M. R., ISSELBACHER K. J. STUDIES ON THE TRANSPORT AND METABOLISM OF CONJUGATED BILE SALTS BY INTESTINAL MUCOSA. J Clin Invest. 1964 Mar;43:467–476. doi: 10.1172/JCI104932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts I., Holmes W. M., Hylemon P. B. Development of a new shuttle plasmid system for Escherichia coli and Clostridium perfringens. Appl Environ Microbiol. 1988 Jan;54(1):268–270. doi: 10.1128/aem.54.1.268-270.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiff E. R., Small N. C., Dietschy J. M. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest. 1972 Jun;51(6):1351–1362. doi: 10.1172/JCI106931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott P. T., Rood J. I. Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene. 1989 Oct 30;82(2):327–333. doi: 10.1016/0378-1119(89)90059-0. [DOI] [PubMed] [Google Scholar]
- Shimada K., Bricknell K. S., Finegold S. M. Deconjugation of bile acids by intestinal bacteria: review of literature and additional studies. J Infect Dis. 1969 Mar;119(3):273–281. doi: 10.1093/infdis/119.3.273. [DOI] [PubMed] [Google Scholar]
- Shindo K., Fukushima K. Deconjugation of bile acids by human intestinal bacteria. Gastroenterol Jpn. 1976;11(3):167–174. doi: 10.1007/BF02777700. [DOI] [PubMed] [Google Scholar]
- Stellwag E. J., Hylemon P. B. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim Biophys Acta. 1976 Nov 8;452(1):165–176. doi: 10.1016/0005-2744(76)90068-1. [DOI] [PubMed] [Google Scholar]
- Tannock G. W., Dashkevicz M. P., Feighner S. D. Lactobacilli and bile salt hydrolase in the murine intestinal tract. Appl Environ Microbiol. 1989 Jul;55(7):1848–1851. doi: 10.1128/aem.55.7.1848-1851.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
