Abstract
Evidence for substantial degradation of polychlorinated biphenyl mixtures Aroclor 1242, 1254, and 1260 by the white rot fungus Phanerochaete chrysosporium, based on congener-specific gas chromatographic analysis, is presented. Maximal degradation (percent by weight) of Aroclors 1242, 1254, and 1260 was 60.9, 30.5, and 17.6%, respectively. Most of the congeners in Aroclors 1242 and 1254 were degraded extensively both in low-N (ligninolytic) as well as high-N (nonligninolytic) defined media. Even more extensive degradation of the congeners was observed in malt extract medium. Congeners with varying numbers of ortho, meta, and para chlorines were extensively degraded, indicating relative nonspecificity for the position of chlorine substitutions on the biphenyl ring. Aroclor 1260, which has not been conclusively shown to undergo aerobic microbial degradation, was shown to undergo substantial net degradation by P. chrysosporium. Maximal degradation of Aroclor 1260 was observed in malt extract medium (18.4% on a molar basis), in which most of the individual congeners were degraded.
Full Text
The Full Text of this article is available as a PDF (217.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bedard D. L., Wagner R. E., Brennan M. J., Haberl M. L., Brown J. F., Jr Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl Environ Microbiol. 1987 May;53(5):1094–1102. doi: 10.1128/aem.53.5.1094-1102.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bumpus J. A., Tien M., Wright D., Aust S. D. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 1985 Jun 21;228(4706):1434–1436. doi: 10.1126/science.3925550. [DOI] [PubMed] [Google Scholar]
- Kohler H. P., Kohler-Staub D., Focht D. D. Cometabolism of polychlorinated biphenyls: enhanced transformation of Aroclor 1254 by growing bacterial cells. Appl Environ Microbiol. 1988 Aug;54(8):1940–1945. doi: 10.1128/aem.54.8.1940-1945.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quensen John F., Boyd Stephen A., Tiedje James M. Dechlorination of Four Commercial Polychlorinated Biphenyl Mixtures (Aroclors) by Anaerobic Microorganisms from Sediments. Appl Environ Microbiol. 1990 Aug;56(8):2360–2369. doi: 10.1128/aem.56.8.2360-2369.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy C. A. An overview of the recent advances on the physiology and molecular biology of lignin peroxidases of Phanerochaete chrysosporium. J Biotechnol. 1993 Jul;30(1):91–107. doi: 10.1016/0168-1656(93)90030-q. [DOI] [PubMed] [Google Scholar]
- Yadav J. S., Reddy C. A. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Mar;59(3):756–762. doi: 10.1128/aem.59.3.756-762.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yadav J. S., Reddy C. A. Mineralization of 2,4-Dichlorophenoxyacetic Acid (2,4-D) and Mixtures of 2,4-D and 2,4,5-Trichlorophenoxyacetic Acid by Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Sep;59(9):2904–2908. doi: 10.1128/aem.59.9.2904-2908.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yadav J. S., Wallace R. E., Reddy C. A. Mineralization of mono- and dichlorobenzenes and simultaneous degradation of chloro- and methyl-substituted benzenes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1995 Feb;61(2):677–680. doi: 10.1128/aem.61.2.677-680.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]