Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jul;61(7):2631–2635. doi: 10.1128/aem.61.7.2631-2635.1995

One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium.

B W Bogan 1, R T Lamar 1
PMCID: PMC167535  PMID: 7618875

Abstract

The abilities of whole cultures of Phanerochaete chrysosporium and P. chrysosporium manganese peroxidase-mediated lipid peroxidation reactions to degrade the polycyclic aromatic hydrocarbons (PAHs) found in creosote were studied. The disappearance of 12 three- to six-ring PAHs occurred in both systems. Both in vivo and in vitro, the disappearance of all PAHs was found to be very strongly correlated with ionization potential. This was true even for compounds beyond the ionization potential thresholds of lignin peroxidase and Mn3+. Deviations from this correlation were seen in the cases of PAHs which are susceptible to radical addition reactions. These results thus begin to clarify the mechanisms of non-lignin peroxidase-labile PAH degradation in the manganese peroxidase-lipid peroxidation system and provide further evidence for the ability of this system to explain the in vivo oxidation of these compounds.

Full Text

The Full Text of this article is available as a PDF (205.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buettner G. R. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys. 1993 Feb 1;300(2):535–543. doi: 10.1006/abbi.1993.1074. [DOI] [PubMed] [Google Scholar]
  2. Bumpus J. A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1989 Jan;55(1):154–158. doi: 10.1128/aem.55.1.154-158.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bumpus J. A., Tien M., Wright D., Aust S. D. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 1985 Jun 21;228(4706):1434–1436. doi: 10.1126/science.3925550. [DOI] [PubMed] [Google Scholar]
  4. Cavalieri E., Rogan E. Role of radical cations in aromatic hydrocarbon carcinogenesis. Environ Health Perspect. 1985 Dec;64:69–84. doi: 10.1289/ehp.856469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dhawale S. W., Dhawale S. S., Dean-Ross D. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol. 1992 Sep;58(9):3000–3006. doi: 10.1128/aem.58.9.3000-3006.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Field J. A., de Jong E., Feijoo Costa G., de Bont J. A. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol. 1992 Jul;58(7):2219–2226. doi: 10.1128/aem.58.7.2219-2226.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hammel K. E., Gai W. Z., Green B., Moen M. A. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Jun;58(6):1832–1838. doi: 10.1128/aem.58.6.1832-1838.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammel K. E., Green B., Gai W. Z. Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10605–10608. doi: 10.1073/pnas.88.23.10605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986 Dec 25;261(36):16948–16952. [PubMed] [Google Scholar]
  10. Hammel K. E., Kalyanaraman B., Kirk T. K. Substrate free radicals are intermediates in ligninase catalysis. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3708–3712. doi: 10.1073/pnas.83.11.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kersten P. J., Tien M., Kalyanaraman B., Kirk T. K. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem. 1985 Mar 10;260(5):2609–2612. [PubMed] [Google Scholar]
  12. Lamar R. T., Larsen M. J., Kirk T. K. Sensitivity to and Degradation of Pentachlorophenol by Phanerochaete spp. Appl Environ Microbiol. 1990 Nov;56(11):3519–3526. doi: 10.1128/aem.56.11.3519-3526.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moen M. A., Hammel K. E. Lipid Peroxidation by the Manganese Peroxidase of Phanerochaete chrysosporium Is the Basis for Phenanthrene Oxidation by the Intact Fungus. Appl Environ Microbiol. 1994 Jun;60(6):1956–1961. doi: 10.1128/aem.60.6.1956-1961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Padbury G., Sligar S. G., Labeque R., Marnett L. J. Ferric bleomycin catalyzed reduction of 10-hydroperoxy-8,12-octadecadienoic acid: evidence for homolytic O-O bond scission. Biochemistry. 1988 Oct 4;27(20):7846–7852. doi: 10.1021/bi00420a039. [DOI] [PubMed] [Google Scholar]
  15. Shimizu T., Murakami Y., Hatano M. Glu318 and Thr319 mutations of cytochrome P450 1A2 remarkably enhance homolytic O-O cleavage of alkyl hydroperoxides. An optical absorption spectral study. J Biol Chem. 1994 May 6;269(18):13296–13304. [PubMed] [Google Scholar]
  16. Simic M. G., Taylor K. A. Introduction to peroxidation and antioxidation mechanisms. Basic Life Sci. 1988;49:1–10. doi: 10.1007/978-1-4684-5568-7_1. [DOI] [PubMed] [Google Scholar]
  17. Sutherland J. B., Selby A. L., Freeman J. P., Evans F. E., Cerniglia C. E. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol. 1991 Nov;57(11):3310–3316. doi: 10.1128/aem.57.11.3310-3316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tien M., Kirk T. K. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science. 1983 Aug 12;221(4611):661–663. doi: 10.1126/science.221.4611.661. [DOI] [PubMed] [Google Scholar]
  19. Vaz A. D., Coon M. J. Reductive cleavage of hydroperoxides by cytochrome P-450. Methods Enzymol. 1990;186:278–282. doi: 10.1016/0076-6879(90)86120-k. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES