Abstract
The effect of temperature and the availability of nutrients on the transition of spiral Campylobacter jejuni cells to coccoid forms was investigated. Ageing of spiral C. jejuni cells in either nutrient-poor or nutrient-rich environments resulted in the formation of nonculturable coccoid cells at 4, 12, and 25 degrees C after different periods, with the cells incubated at 4 degrees C in nutrient-deficient media remaining culturable the longest. To study the phenomenon, ATP levels, protein profiles, and fatty acid compositions were monitored under conditions where the transition from spiral to coccoid cells occurred. During storage, the levels of intracellular ATP were highest in cells incubated at low temperatures (4 and 12 degrees C) and remained constant after a small initial decrease. During the transformation from spiral to coccoid forms, no alteration in protein profiles could be detected; indeed, inhibition of protein synthesis by chloramphenicol did not influence the transition. Furthermore, DNA damage by gamma irradiation had no effect on the process. Membrane fatty acid composition of cocci formed at low temperatures was found to be almost identical to that of spiral cells, whereas that of cocci formed at 25 degrees C was clearly different. Combining these results, it is concluded that the formation of cocci is not an active process. However, distinctions between cocci formed at different temperatures were observed. Cocci formed at 4 degrees C show characteristics comparable to those of spirals, and these cocci may well play a role in the contamination cycle of C. jejuni.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (334.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beumer R. R., de Vries J., Rombouts F. M. Campylobacter jejuni non-culturable coccoid cells. Int J Food Microbiol. 1992 Jan-Feb;15(1-2):153–163. doi: 10.1016/0168-1605(92)90144-r. [DOI] [PubMed] [Google Scholar]
- Clavero M. R., Monk J. D., Beuchat L. R., Doyle M. P., Brackett R. E. Inactivation of Escherichia coli O157:H7, salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl Environ Microbiol. 1994 Jun;60(6):2069–2075. doi: 10.1128/aem.60.6.2069-2075.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coloe P. J., Slattery J. F., Cavanaugh P., Vaughan J. The cellular fatty acid composition of Campylobacter species isolated from cases of enteritis in man and animals. J Hyg (Lond) 1986 Apr;96(2):225–229. doi: 10.1017/s0022172400065992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths P. L. Morphological changes of Campylobacter jejuni growing in liquid culture. Lett Appl Microbiol. 1993 Oct;17(4):152–155. doi: 10.1111/j.1472-765x.1993.tb00382.x. [DOI] [PubMed] [Google Scholar]
- Hazeleger W., Arkesteijn C., Toorop-Bouma A., Beumer R. Detection of the coccoid form of Campylobacter jejuni in chicken products with the use of the polymerase chain reaction. Int J Food Microbiol. 1994 Dec;24(1-2):273–281. doi: 10.1016/0168-1605(94)90125-2. [DOI] [PubMed] [Google Scholar]
- Humphrey T. J., Henley A., Lanning D. G. The colonization of broiler chickens with Campylobacter jejuni: some epidemiological investigations. Epidemiol Infect. 1993 Jun;110(3):601–607. doi: 10.1017/s0950268800051025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones D. M., Sutcliffe E. M., Curry A. Recovery of viable but non-culturable Campylobacter jejuni. J Gen Microbiol. 1991 Oct;137(10):2477–2482. doi: 10.1099/00221287-137-10-2477. [DOI] [PubMed] [Google Scholar]
- Kjelleberg S., Hermansson M., Mårdén P., Jones G. W. The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol. 1987;41:25–49. doi: 10.1146/annurev.mi.41.100187.000325. [DOI] [PubMed] [Google Scholar]
- Kogure K., Simidu U., Taga N. A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol. 1979 Mar;25(3):415–420. doi: 10.1139/m79-063. [DOI] [PubMed] [Google Scholar]
- Linder K., Oliver J. D. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl Environ Microbiol. 1989 Nov;55(11):2837–2842. doi: 10.1128/aem.55.11.2837-2842.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medema G. J., Schets F. M., van de Giessen A. W., Havelaar A. H. Lack of colonization of 1 day old chicks by viable, non-culturable Campylobacter jejuni. J Appl Bacteriol. 1992 Jun;72(6):512–516. doi: 10.1111/j.1365-2672.1992.tb01868.x. [DOI] [PubMed] [Google Scholar]
- Moore L. V., Bourne D. M., Moore W. E. Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. Int J Syst Bacteriol. 1994 Apr;44(2):338–347. doi: 10.1099/00207713-44-2-338. [DOI] [PubMed] [Google Scholar]
- Moran A. P., Upton M. E. A comparative study of the rod and coccoid forms of Campylobacter jejuni ATCC 29428. J Appl Bacteriol. 1986 Feb;60(2):103–110. doi: 10.1111/j.1365-2672.1986.tb03366.x. [DOI] [PubMed] [Google Scholar]
- Moran A. P., Upton M. E. Effect of medium supplements, illumination and superoxide dismutase on the production of coccoid forms of Campylobacter jejuni ATCC 29428. J Appl Bacteriol. 1987 Jan;62(1):43–51. doi: 10.1111/j.1365-2672.1987.tb02379.x. [DOI] [PubMed] [Google Scholar]
- Moran A. P., Upton M. E. Factors affecting production of coccoid forms by Campylobacter jejuni on solid media during incubation. J Appl Bacteriol. 1987 Jun;62(6):527–537. doi: 10.1111/j.1365-2672.1987.tb02685.x. [DOI] [PubMed] [Google Scholar]
- Notermans S., Hoogenboom-Verdegaal A. Existing and emerging foodborne diseases. Int J Food Microbiol. 1992 Mar-Apr;15(3-4):197–205. doi: 10.1016/0168-1605(92)90049-9. [DOI] [PubMed] [Google Scholar]
- Pearson A. D., Greenwood M., Healing T. D., Rollins D., Shahamat M., Donaldson J., Colwell R. R. Colonization of broiler chickens by waterborne Campylobacter jejuni. Appl Environ Microbiol. 1993 Apr;59(4):987–996. doi: 10.1128/aem.59.4.987-996.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Püttmann M., Ade N., Hof H. Dependence of fatty acid composition of Listeria spp. on growth temperature. Res Microbiol. 1993 May;144(4):279–283. doi: 10.1016/0923-2508(93)90012-q. [DOI] [PubMed] [Google Scholar]
- Reeve C. A., Amy P. S., Matin A. Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. J Bacteriol. 1984 Dec;160(3):1041–1046. doi: 10.1128/jb.160.3.1041-1046.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rollins D. M., Colwell R. R. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol. 1986 Sep;52(3):531–538. doi: 10.1128/aem.52.3.531-538.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saha S. K., Saha S., Sanyal S. C. Recovery of injured Campylobacter jejuni cells after animal passage. Appl Environ Microbiol. 1991 Nov;57(11):3388–3389. doi: 10.1128/aem.57.11.3388-3389.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sjögren E., Kaijser B., Werner M. Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli isolated in Sweden: a 10-year follow-up report. Antimicrob Agents Chemother. 1992 Dec;36(12):2847–2849. doi: 10.1128/aac.36.12.2847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch D. F. Applications of cellular fatty acid analysis. Clin Microbiol Rev. 1991 Oct;4(4):422–438. doi: 10.1128/cmr.4.4.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van de Giessen A., Mazurier S. I., Jacobs-Reitsma W., Jansen W., Berkers P., Ritmeester W., Wernars K. Study on the epidemiology and control of Campylobacter jejuni in poultry broiler flocks. Appl Environ Microbiol. 1992 Jun;58(6):1913–1917. doi: 10.1128/aem.58.6.1913-1917.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]