Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jul;61(7):2754–2758. doi: 10.1128/aem.61.7.2754-2758.1995

Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1.

H Shen 1, Y T Wang 1
PMCID: PMC167547  PMID: 7618887

Abstract

In a defined coculture of a Cr(VI) reducer, Escherichia coli ATCC 33456, and a phenol degrader, Pseudomonas putida DMP-1, simultaneous reduction of Cr(VI) and degradation of phenol was observed. When Cr(VI) was present in the coculture, quantitative transformation of Cr(VI) into Cr(III) proceeded with simultaneous degradation of phenol. Cr(VI) reduction was correlated to phenol degradation in the coculture as demonstrated by a regression analysis of the cumulative Cr(VI) reduction and the cumulative phenol degradation. Both the rate and extent of Cr(VI) reduction and phenol degradation were significantly influenced by the population composition of the coculture. Although Cr(VI) reduction occurred as a result of E. coli metabolism, the rate of phenol degradation by P. putida may become a rate-limiting factor for Cr(VI) reduction at a low population ratio of P. putida to E. coli. Phenol degradation by P. putida was very susceptible to the presence of Cr(VI), whereas Cr(VI) reduction by E. coli was significantly influenced by phenol only when phenol was present at high concentrations (> 9 mM).

Full Text

The Full Text of this article is available as a PDF (234.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez P. J., Vogel T. M. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol. 1991 Oct;57(10):2981–2985. doi: 10.1128/aem.57.10.2981-2985.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Evans P. J., Mang D. T., Kim K. S., Young L. Y. Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol. 1991 Apr;57(4):1139–1145. doi: 10.1128/aem.57.4.1139-1145.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gvozdiak P. I., Mogilevich N. F., Ryl'skii A. F., Grishchenko N. I. Vosstanovlenie shestivalentnogo khroma kollektsionnymi shtammami bakterii. Mikrobiologiia. 1986 Nov-Dec;55(6):962–965. [PubMed] [Google Scholar]
  4. Kvasnikov E. I., Kliusnikova T. M., Kasatkina T. P., Stepaniuk V. V., Kuberskaia S. L. Bakterii, vosstanavlivaiushchie khrom v prirode i v stokakh proizvodstvennykh predpriiatii. Mikrobiologiia. 1988 Jul-Aug;57(4):680–685. [PubMed] [Google Scholar]
  5. Llovera S., Bonet R., Simon-Pujol M. D., Congregado F. Chromate Reduction by Resting Cells of Agrobacterium radiobacter EPS-916. Appl Environ Microbiol. 1993 Oct;59(10):3516–3518. doi: 10.1128/aem.59.10.3516-3518.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lovley D. R., Phillips E. J. Reduction of Chromate by Desulfovibrio vulgaris and Its c(3) Cytochrome. Appl Environ Microbiol. 1994 Feb;60(2):726–728. doi: 10.1128/aem.60.2.726-728.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Petrilli F. L., De Flora S. Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium. Appl Environ Microbiol. 1977 Apr;33(4):805–809. doi: 10.1128/aem.33.4.805-809.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Romanenko V. I., Koren'kov V. N. Chistaia kul'tura bakterii, ispol'zuiushchikh khromaty i bikhromaty v kachestve aktseptora vodoroda pri razvitii v anaérobnykh usloviiakh. Mikrobiologiia. 1977 May-Jun;46(3):414–417. [PubMed] [Google Scholar]
  9. Shen H., Wang Y. T. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol. 1993 Nov;59(11):3771–3777. doi: 10.1128/aem.59.11.3771-3777.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Suzuki T., Miyata N., Horitsu H., Kawai K., Takamizawa K., Tai Y., Okazaki M. NAD(P)H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol. 1992 Aug;174(16):5340–5345. doi: 10.1128/jb.174.16.5340-5345.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wang P. C., Mori T., Komori K., Sasatsu M., Toda K., Ohtake H. Isolation and Characterization of an Enterobacter cloacae Strain That Reduces Hexavalent Chromium under Anaerobic Conditions. Appl Environ Microbiol. 1989 Jul;55(7):1665–1669. doi: 10.1128/aem.55.7.1665-1669.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wang Y. T., Shen H. Bacterial reduction of hexavalent chromium. J Ind Microbiol. 1995 Feb;14(2):159–163. doi: 10.1007/BF01569898. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES