Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jul;61(7):2771–2774. doi: 10.1128/aem.61.7.2771-2774.1995

Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract.

N Klijn 1, A H Weerkamp 1, W M de Vos 1
PMCID: PMC167550  PMID: 7618890

Abstract

A human feeding study was performed with Lactococcus lactis TC165.5, which is genetically marked by insertion of the sucrose-nisin conjugative transposon Tn5276 and chromosomal resistance to rifampin and streptomycin. The fate of strain TC165.5 and its nucleic acids was monitored by conventional plating methods and by molecular detection techniques based on specific PCR amplification of the nisin (nisA) gene from DNA extracted from human feces. A method was developed for the efficient extraction of microbial DNA from human feces. The results show that a fraction of viable cells of L. lactis TC165.5 survived passage through the human gastrointestinal tract. Only cells that passed within 3 days of ingestion could be recovered from the feces of the volunteers, and they accounted for approximately 1% of the total number of cells consumed. The presence of nisA in DNA extracted from feces could be detected up to 4 days, when viable cells were no longer present.

Full Text

The Full Text of this article is available as a PDF (236.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cavé H., Mariani P., Grandchamp B., Elion J., Denamur E. Reliability of PCR directly from stool samples: usefulness of an internal standard. Biotechniques. 1994 May;16(5):809–810. [PubMed] [Google Scholar]
  2. Gasson M. J., Swindell S., Maeda S., Dodd H. M. Molecular rearrangement of lactose plasmid DNA associated with high-frequency transfer and cell aggregation in Lactococcus lactis 712. Mol Microbiol. 1992 Nov;6(21):3213–3223. doi: 10.1111/j.1365-2958.1992.tb01776.x. [DOI] [PubMed] [Google Scholar]
  3. Godon J. J., Delorme C., Ehrlich S. D., Renault P. Divergence of Genomic Sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris. Appl Environ Microbiol. 1992 Dec;58(12):4045–4047. doi: 10.1128/aem.58.12.4045-4047.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gruzza M., Duval-Iflah Y., Ducluzeau R. Colonization of the digestive tract of germ-free mice by genetically engineered strains of Lactococcus lactis: study of recombinant DNA stability. Microb Releases. 1992 Dec;1(3):165–171. [PubMed] [Google Scholar]
  5. Klijn N., Weerkamp A. H., de Vos W. M. Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Appl Environ Microbiol. 1991 Nov;57(11):3390–3393. doi: 10.1128/aem.57.11.3390-3393.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lorenz M. G., Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev. 1994 Sep;58(3):563–602. doi: 10.1128/mr.58.3.563-602.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mulders J. W., Boerrigter I. J., Rollema H. S., Siezen R. J., de Vos W. M. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem. 1991 Nov 1;201(3):581–584. doi: 10.1111/j.1432-1033.1991.tb16317.x. [DOI] [PubMed] [Google Scholar]
  8. Norton P. M., Brown H. W., Le Page R. W. The immune response to Lactococcus lactis: implications for its use as a vaccine delivery vehicle. FEMS Microbiol Lett. 1994 Jul 15;120(3):249–256. doi: 10.1111/j.1574-6968.1994.tb07041.x. [DOI] [PubMed] [Google Scholar]
  9. Pochart P., Marteau P., Bouhnik Y., Goderel I., Bourlioux P., Rambaud J. C. Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. Am J Clin Nutr. 1992 Jan;55(1):78–80. doi: 10.1093/ajcn/55.1.78. [DOI] [PubMed] [Google Scholar]
  10. Rauch P. J., De Vos W. M. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol. 1992 Feb;174(4):1280–1287. doi: 10.1128/jb.174.4.1280-1287.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Saulnier P., Andremont A. Detection of genes in feces by booster polymerase chain reaction. J Clin Microbiol. 1992 Aug;30(8):2080–2083. doi: 10.1128/jcm.30.8.2080-2083.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wells J. M., Wilson P. W., Norton P. M., Gasson M. J., Le Page R. W. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol. 1993 Jun;8(6):1155–1162. doi: 10.1111/j.1365-2958.1993.tb01660.x. [DOI] [PubMed] [Google Scholar]
  13. de Vos W. M., Mulders J. W., Siezen R. J., Hugenholtz J., Kuipers O. P. Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl Environ Microbiol. 1993 Jan;59(1):213–218. doi: 10.1128/aem.59.1.213-218.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. van Zwet A. A., Thijs J. C., Kooistra-Smid A. M., Schirm J., Snijder J. A. Use of PCR with feces for detection of Helicobacter pylori infections in patients. J Clin Microbiol. 1994 May;32(5):1346–1348. doi: 10.1128/jcm.32.5.1346-1348.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES