Abstract
Glucoamylase I (GAI) from Aspergillus awamori var. kawachi hydrolyzes raw starch efficiently and is composed of three functional domains: the amino-terminal catalytic GAI' domain (A-1 to V-469), the threonine- and serine-rich O-glycosylated Gp-I domain (A-470 to V-514), and the carboxy-terminal raw starch-binding Cp domain (A-515 to R-615). In order to investigate the role of the Gp-I domain, an additional repeat of Gp-I and internal deletions of the entire Gp-I sequence or parts of the Gp-I sequence were introduced within Gp-I. All mutant genes as well as the wild-type gene were inserted into a yeast-secretion vector, YEUp3H alpha, and expressed in Saccharomyces cerevisiae. Wild-type GAI expressed in yeast cells (GAY), GAGpI, having an extra Gp-I, and GA delta 470-493, lacking the A-470-to-T-493 sequences of Gp-I, were successfully secreted into the culture medium. On the other hand, GA delta 470-507, lacking A-470 to S-507, and GA delta GpI, lacking the entire Gp-I (A-470-to-V-514) sequence, failed to be secreted and remained in the yeast cells. The carbohydrate content of GAGpI was 1.2 times higher than that of GAY and 2.4 times higher than that of the original GAI. The raw starch digestibility of GAGpI was almost the same as that of GAY but was 1.5 times faster than that of GAI.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (306.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen H. M., Ford C., Reilly P. J. Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Biochem J. 1994 Jul 1;301(Pt 1):275–281. doi: 10.1042/bj3010275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubé S., Fisher J. W., Powell J. S. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J Biol Chem. 1988 Nov 25;263(33):17516–17521. [PubMed] [Google Scholar]
- Fukuda K., Teramoto Y., Goto M., Sakamoto J., Mitsuiki S., Hayashida S. Specific inhibition by cyclodextrins of raw starch digestion by fungal glucoamylase. Biosci Biotechnol Biochem. 1992 Apr;56(4):556–559. doi: 10.1271/bbb.56.556. [DOI] [PubMed] [Google Scholar]
- Goto M., Kuwano E., Kanlayakrit W., Hayashida S. Role of the carbohydrate moiety of a glucoamylase from Aspergillus awamori var. kawachi in the digestion of raw starch. Biosci Biotechnol Biochem. 1995 Jan;59(1):16–20. doi: 10.1271/bbb.59.16. [DOI] [PubMed] [Google Scholar]
- Goto M., Semimaru T., Furukawa K., Hayashida S. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Appl Environ Microbiol. 1994 Nov;60(11):3926–3930. doi: 10.1128/aem.60.11.3926-3930.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunnarsson A., Svensson B., Nilsson B., Svensson S. Structural studies on the O-glycosidically linked carbohydrate chains of glucoamylase G1 from Aspergillus niger. Eur J Biochem. 1984 Dec 17;145(3):463–467. doi: 10.1111/j.1432-1033.1984.tb08578.x. [DOI] [PubMed] [Google Scholar]
- Hata Y., Kitamoto K., Gomi K., Kumagai C., Tamura G., Hara S. The glucoamylase cDNA from Aspergillus oryzae: its cloning, nucleotide sequence, and expression in Saccharomyces cerevisiae. Agric Biol Chem. 1991 Apr;55(4):941–949. [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Innis M. A., Holland M. J., McCabe P. C., Cole G. E., Wittman V. P., Tal R., Watt K. W., Gelfand D. H., Holland J. P., Meade J. H. Expression, Glycosylation, and Secretion of an Aspergillus Glucoamylase by Saccharomyces cerevisiae. Science. 1985 Apr 5;228(4695):21–26. doi: 10.1126/science.228.4695.21. [DOI] [PubMed] [Google Scholar]
- Kanaya E., Higashizaki T., Ozawa F., Hirai K., Nishizawa M., Tokunaga M., Tsukui H., Hatanaka H., Hishinuma F. Synthesis and secretion of human nerve growth factor by Saccharomyces cerevisiae. Gene. 1989 Nov 15;83(1):65–74. doi: 10.1016/0378-1119(89)90404-6. [DOI] [PubMed] [Google Scholar]
- Kitada K., Hishinuma F. Evidence for preferential multiplication of the internal unit in tandem repeats of the mating factor alpha genes in Saccharomyces yeasts. Curr Genet. 1988;13(1):1–5. doi: 10.1007/BF00365748. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Tokunaga M., Kawamura A., Kitada K., Hishinuma F. Secretion of killer toxin encoded on the linear DNA plasmid pGKL1 from Saccharomyces cerevisiae. J Biol Chem. 1990 Oct 5;265(28):17274–17280. [PubMed] [Google Scholar]
- Williamson G., Belshaw N. J., Williamson M. P. O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Biochem J. 1992 Mar 1;282(Pt 2):423–428. doi: 10.1042/bj2820423. [DOI] [PMC free article] [PubMed] [Google Scholar]