Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Aug;61(8):2936–2942. doi: 10.1128/aem.61.8.2936-2942.1995

Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene.

M W Reij 1, J Kieboom 1, J A de Bont 1, S Hartmans 1
PMCID: PMC167570  PMID: 7487026

Abstract

Propene-grown Xanthobacter sp. strain Py2 cells can degrade trichloroethylene (TCE), but the transformation capacity of such cells was limited and depended on both the TCE concentration and the biomass concentration. Toxic metabolites presumably accumulated extracellularly, because the fermentation of glucose by yeast cells was inhibited by TCE degradation products formed by strain Py2. The affinity of the propene monooxygenase for TCE was low, and this allowed strain Py2 to grow on propene in the presence of TCE. During batch growth with propene and TCE, the TCE was not degraded before most of the propene had been consumed. Continuous degradation of TCE in a chemostat culture of strain Py2 growing with propene was observed with TCE concentrations up to 206 microns in the growth medium without washout of the fermentor occurring. At this TCE concentration the specific degradation rate was 1.5 nmol/min/mg of biomass. The total amount of TCE that could be degraded during simultaneous growth on propene depended on the TCE concentration and ranged from 0.03 to 0.34g of TCE per g of biomass. The biomass yield on propene was not affected by the cometabolic degradation of TCE.

Full Text

The Full Text of this article is available as a PDF (290.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Cohen L., McCarty P. L. Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl Environ Microbiol. 1991 Jan;57(1):228–235. doi: 10.1128/aem.57.1.228-235.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amoore J. E., Hautala E. Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J Appl Toxicol. 1983 Dec;3(6):272–290. doi: 10.1002/jat.2550030603. [DOI] [PubMed] [Google Scholar]
  3. Ensign S. A., Hyman M. R., Arp D. J. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl Environ Microbiol. 1992 Sep;58(9):3038–3046. doi: 10.1128/aem.58.9.3038-3046.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ewers J., Freier-Schröder D., Knackmuss H. J. Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Arch Microbiol. 1990;154(4):410–413. doi: 10.1007/BF00276540. [DOI] [PubMed] [Google Scholar]
  5. Folsom B. R., Chapman P. J. Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4. Appl Environ Microbiol. 1991 Jun;57(6):1602–1608. doi: 10.1128/aem.57.6.1602-1608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Folsom B. R., Chapman P. J., Pritchard P. H. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol. 1990 May;56(5):1279–1285. doi: 10.1128/aem.56.5.1279-1285.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox B. G., Borneman J. G., Wackett L. P., Lipscomb J. D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry. 1990 Jul 10;29(27):6419–6427. doi: 10.1021/bi00479a013. [DOI] [PubMed] [Google Scholar]
  8. Henry S. M., Grbić-Galić D. Inhibition of trichloroethylene oxidation by the transformation intermediate carbon monoxide. Appl Environ Microbiol. 1991 Jun;57(6):1770–1776. doi: 10.1128/aem.57.6.1770-1776.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koh S. C., Bowman J. P., Sayler G. S. Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol. 1993 Apr;59(4):960–967. doi: 10.1128/aem.59.4.960-967.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Landa A. S., Sipkema E. M., Weijma J., Beenackers A. A., Dolfing J., Janssen D. B. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl Environ Microbiol. 1994 Sep;60(9):3368–3374. doi: 10.1128/aem.60.9.3368-3374.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Malachowsky K. J., Phelps T. J., Teboli A. B., Minnikin D. E., White D. C. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by rhodococcus species. Appl Environ Microbiol. 1994 Feb;60(2):542–548. doi: 10.1128/aem.60.2.542-548.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oldenhuis R., Oedzes J. Y., van der Waarde J. J., Janssen D. B. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol. 1991 Jan;57(1):7–14. doi: 10.1128/aem.57.1.7-14.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Phelps T. J., Niedzielski J. J., Schram R. M., Herbes S. E., White D. C. Biodegradation of trichloroethylene in continuous-recycle expanded-bed bioreactors. Appl Environ Microbiol. 1990 Jun;56(6):1702–1709. doi: 10.1128/aem.56.6.1702-1709.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rasche M. E., Hyman M. R., Arp D. J. Factors Limiting Aliphatic Chlorocarbon Degradation by Nitrosomonas europaea: Cometabolic Inactivation of Ammonia Monooxygenase and Substrate Specificity. Appl Environ Microbiol. 1991 Oct;57(10):2986–2994. doi: 10.1128/aem.57.10.2986-2994.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wackett L. P., Householder S. R. Toxicity of Trichloroethylene to Pseudomonas putida F1 Is Mediated by Toluene Dioxygenase. Appl Environ Microbiol. 1989 Oct;55(10):2723–2725. doi: 10.1128/aem.55.10.2723-2725.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES