Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Aug;61(8):3042–3050. doi: 10.1128/aem.61.8.3042-3050.1995

Degradation and utilization by Butyrivibrio fibrisolvens H17c of xylans with different chemical and physical properties.

R B Hespell 1, M A Cotta 1
PMCID: PMC167580  PMID: 7487036

Abstract

Hemicelluloses, mainly xylans, can be a major component of diets consumed by ruminants and undergo various degrees of microbial digestion in the rumen. The ability of Butyrivibrio fibrisolvens, a major xylanolytic ruminal species, to degrade and utilize nine chemically and physically different xylans for growth was examined. The arabinoxylans used included two isolated from corncobs (CCX-A and CCX-B), a native xylan excreted by corn cell tissue cultures (CX), an oxalic acid-treated, arabinose-depleted CX, and oat spelt xylan. Except for CCX-A, these xylans were extensively converted within 3 h of growth to acid-alcohol-soluble forms that remained at high levels for the duration of culture growth. These xylans contain mainly xylose and arabinose with small amounts of uronic acids. For a given xylan, all three components were used at about the same rate and extent. During the early stages of growth B. fibrisolvens also rapidly solubilized glucuronoxylans from birchwood, larchwood, 4-O-methylglucuronoxylan, and the xylose homopolymer xylan isolated from beechwood (BEWX). In contrast to the findings for the arabinoxylans, little acid-alcohol-soluble carbohydrate remained in these cultures after 9 h of growth, except for BEWX. Initially, with birchwood, larchwood, and 4-O-methylglucuronoxylan the uronic acid components were preferentially used over the xylose. Final xylan utilization measured at 72 h for all xylans varied from 57% for CCX-A to 92% for BEWX and was correlated with the initial 12-h utilization rate for a given xylan. Since CCX-A and BEWX are both highly water insoluble, this aspect did not appear to influence overall utilization.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (297.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourquin L. D., Titgemeyer E. C., Merchen N. R., Fahey G. C., Jr Forage level and particle size effects on orchardgrass digestion by steers: I. Site and extent of organic matter, nitrogen, and cell wall digestion. J Anim Sci. 1994 Mar;72(3):746–758. doi: 10.2527/1994.723746x. [DOI] [PubMed] [Google Scholar]
  2. Coen J. A., Dehority B. A. Degradation and utilization of hemicellulose from intact forages by pure cultures of rumen bacteria. Appl Microbiol. 1970 Sep;20(3):362–368. doi: 10.1128/am.20.3.362-368.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cotta M. A. Utilization of xylooligosaccharides by selected ruminal bacteria. Appl Environ Microbiol. 1993 Nov;59(11):3557–3563. doi: 10.1128/aem.59.11.3557-3563.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DEHORITY B. A. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA. J Bacteriol. 1965 Jun;89:1515–1520. doi: 10.1128/jb.89.6.1515-1520.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Debeire P., Priem B., Strecker G., Vignon M. Purification and properties of an endo-1,4-xylanase excreted by a hydrolytic thermophilic anaerobe, Clostridium thermolacticum. A proposal for its action mechanism on larchwood 4-O-methylglucuronoxylan. Eur J Biochem. 1990 Feb 14;187(3):573–580. doi: 10.1111/j.1432-1033.1990.tb15339.x. [DOI] [PubMed] [Google Scholar]
  6. Dehority B. A. Rate of isolated hemicellulose degradation and utilization by pure cultures of rumen bacteria. Appl Microbiol. 1967 Sep;15(5):987–993. doi: 10.1128/am.15.5.987-993.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flint H. J., McPherson C. A., Bisset J. Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and beta(1-3,1-4)glucanase activities. Appl Environ Microbiol. 1989 May;55(5):1230–1233. doi: 10.1128/aem.55.5.1230-1233.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flint H. J., McPherson C. A., Martin J. Expression of two xylanase genes from the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 cloned in pUC13. J Gen Microbiol. 1991 Jan;137(1):123–129. doi: 10.1099/00221287-137-1-123. [DOI] [PubMed] [Google Scholar]
  9. Greve L. C., Labavitch J. M., Hungate R. E. alpha-L-arabinofuranosidase from Ruminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall. Appl Environ Microbiol. 1984 May;47(5):1135–1140. doi: 10.1128/aem.47.5.1135-1140.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOWARD B. H., JONES G., PURDOM M. R. The pentosanases of some rumen bacteria. Biochem J. 1960 Jan;74:173–180. doi: 10.1042/bj0740173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hespell R. B., O'Bryan-Shah P. J. Esterase activities in Butyrivibrio fibrisolvens strains. Appl Environ Microbiol. 1988 Aug;54(8):1917–1922. doi: 10.1128/aem.54.8.1917-1922.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hespell R. B., Whitehead T. R. Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J Dairy Sci. 1990 Oct;73(10):3013–3022. doi: 10.3168/jds.S0022-0302(90)78988-6. [DOI] [PubMed] [Google Scholar]
  13. Hespell R. B., Wolf R., Bothast R. J. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria. Appl Environ Microbiol. 1987 Dec;53(12):2849–2853. doi: 10.1128/aem.53.12.2849-2853.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffmann R. A., Geijtenbeek T., Kamerling J. P., Vliegenthart J. F. 1H-N.m.r. study of enzymically generated wheat-endosperm arabinoxylan oligosaccharides: structures of hepta- to tetradeca-saccharides containing two or three branched xylose residues. Carbohydr Res. 1992 Jan;223:19–44. doi: 10.1016/0008-6215(92)80003-j. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lin L. L., Thomson J. A. Cloning, sequencing and expression of a gene encoding a 73 kDa xylanase enzyme from the rumen anaerobe Butyrivibrio fibrisolvens H17c. Mol Gen Genet. 1991 Aug;228(1-2):55–61. doi: 10.1007/BF00282447. [DOI] [PubMed] [Google Scholar]
  17. Mannarelli B. M., Evans S., Lee D. Cloning, sequencing, and expression of a xylanase gene from the anaerobic ruminal bacterium Butyrivibrio fibrisolvens. J Bacteriol. 1990 Aug;172(8):4247–4254. doi: 10.1128/jb.172.8.4247-4254.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matte A., Forsberg C. W. Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl Environ Microbiol. 1992 Jan;58(1):157–168. doi: 10.1128/aem.58.1.157-168.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miron J., Ben-Ghedalia D. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens. Can J Microbiol. 1993 Aug;39(8):780–786. doi: 10.1139/m93-115. [DOI] [PubMed] [Google Scholar]
  20. Miron J., Duncan S. H., Stewart C. S. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls. J Appl Bacteriol. 1994 Mar;76(3):282–287. doi: 10.1111/j.1365-2672.1994.tb01629.x. [DOI] [PubMed] [Google Scholar]
  21. Nishitani K., Nevins D. J. Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J Biol Chem. 1991 Apr 5;266(10):6539–6543. [PubMed] [Google Scholar]
  22. Plant molecular biology. Methods Enzymol. 1986;118:1–829. [PubMed] [Google Scholar]
  23. Sewell G. W., Utt E. A., Hespell R. B., Mackenzie K. F., Ingram L. O. Identification of the Butyrivibrio fibrisolvens xylosidase gene (xylB) coding region and its expression in Escherichia coli. Appl Environ Microbiol. 1989 Feb;55(2):306–311. doi: 10.1128/aem.55.2.306-311.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Strobel H. J. Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens. FEMS Microbiol Lett. 1994 Oct 1;122(3):217–222. doi: 10.1111/j.1574-6968.1994.tb07170.x. [DOI] [PubMed] [Google Scholar]
  25. Wang P., Broda P. Stable defined substrate for turbidimetric assay of endoxylanases. Appl Environ Microbiol. 1992 Oct;58(10):3433–3436. doi: 10.1128/aem.58.10.3433-3436.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wedig C. L., Jaster E. H., Moore K. J. Disappearance of hemicellulosic monosaccharides and alkali-soluble phenolic compounds of normal and brown midrib sorghum x sudangrasses fed to heifers and sheep. J Dairy Sci. 1989 Jan;72(1):104–111. doi: 10.3168/jds.S0022-0302(89)79085-8. [DOI] [PubMed] [Google Scholar]
  27. Whitehead T. R., Hespell R. B. Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl Environ Microbiol. 1989 Apr;55(4):893–896. doi: 10.1128/aem.55.4.893-896.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whitehead T. R., Hespell R. B. The genes for three xylan-degrading activities from Bacteroides ovatus are clustered in a 3.8-kilobase region. J Bacteriol. 1990 May;172(5):2408–2412. doi: 10.1128/jb.172.5.2408-2412.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES