Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Aug;61(8):3057–3062. doi: 10.1128/aem.61.8.3057-3062.1995

Effect of manganese on preferential degradation of lignin by Pleurotus ostreatus during solid-state fermentation.

Z Kerem 1, Y Hadar 1
PMCID: PMC167582  PMID: 7487038

Abstract

Practical utilization of the polysaccharides in the lignocellulosic complex is limited because of the high lignin content of the complex. In this study we focused on the effect of Mn on lignin and cellulose biodegradation during solid-state fermentation by the edible mushroom Pleurotus ostreatus. Preferential degradation of lignin was enhanced by the addition of Mn(II) to cotton stalks at concentrations ranging from 30 to 620 micrograms of Mn per g. This effect was most apparent when we compared mineralization rates of [14C] lignin with mineralization rates of [14C] cellulose. Enhanced selectivity was also observed when we analyzed residual organic matter at the end of the fermentation period by using crude fiber analysis. The cellulose fraction in the original material was 1.8 times larger than the cellulose fraction of lignin. The cellulose/lignin ratio increased during 32 days of solid-state fermentation from 2.5 in the control to 3.3 following the addition of Mn to the medium. The in vitro digestibility value for fermented cotton stalks was 53% of the dry matter. Addition of 600 micrograms of Mn per g to the cotton stalks resulted in a digestibility value of 65.4%. Enhancement of preferential lignin degradation could be result of either increased activity of the ligninolytic enzymes or production of Mn (III), which might preferentially degrade aromatic structures in the lignocellulosic complex.

Full Text

The Full Text of this article is available as a PDF (274.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calvo Rey C., González de Dios J., Lajo Plaza A., Martínez Bermejo A., Montilla Bono J. Síndrome de Guillain-Barré por citomegalovirus a los cuarenta días de vida. An Esp Pediatr. 1990 Nov;33(5):481–484. [PubMed] [Google Scholar]
  2. HALLIWELL G. CATALYTIC DECOMPOSITION OF CELLULOSE UNDER BIOLOGICAL CONDITIONS. Biochem J. 1965 Apr;95:35–40. doi: 10.1042/bj0950035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jung H. G., Valdez F. R., Abad A. R., Blanchette R. A., Hatfield R. D. Effect of white rot basidiomycetes on chemical composition and in vitro digestibility of oat straw and alfalfa stems. J Anim Sci. 1992 Jun;70(6):1928–1935. doi: 10.2527/1992.7061928x. [DOI] [PubMed] [Google Scholar]
  4. Kerem Z., Friesem D., Hadar Y. Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Apr;58(4):1121–1127. doi: 10.1128/aem.58.4.1121-1127.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kerem Z., Hadar Y. Effect of Manganese on Lignin Degradation by Pleurotus ostreatus during Solid-State Fermentation. Appl Environ Microbiol. 1993 Dec;59(12):4115–4120. doi: 10.1128/aem.59.12.4115-4120.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kuan I. C., Tien M. Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1242–1246. doi: 10.1073/pnas.90.4.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Perez J., Jeffries T. W. Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Aug;58(8):2402–2409. doi: 10.1128/aem.58.8.2402-2409.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Périé F. H., Gold M. H. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol. 1991 Aug;57(8):2240–2245. doi: 10.1128/aem.57.8.2240-2245.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Reid I. D. Biological Delignification of Aspen Wood by Solid-State Fermentation with the White-Rot Fungus Merulius tremellosus. Appl Environ Microbiol. 1985 Jul;50(1):133–139. doi: 10.1128/aem.50.1.133-139.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rüttimann-Johnson C., Cullen D., Lamar R. T. Manganese peroxidases of the white rot fungus Phanerochaete sordida. Appl Environ Microbiol. 1994 Feb;60(2):599–605. doi: 10.1128/aem.60.2.599-605.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rüttimann-Johnson C., Salas L., Vicuña R., Kirk T. K. Extracellular Enzyme Production and Synthetic Lignin Mineralization by Ceriporiopsis subvermispora. Appl Environ Microbiol. 1993 Jun;59(6):1792–1797. doi: 10.1128/aem.59.6.1792-1797.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wariishi H., Valli K., Gold M. H. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem. 1992 Nov 25;267(33):23688–23695. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES