Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Aug;61(8):3063–3068. doi: 10.1128/aem.61.8.3063-3068.1995

Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes.

S Kalman 1, K L Kiehne 1, N Cooper 1, M S Reynoso 1, T Yamamoto 1
PMCID: PMC167583  PMID: 7487039

Abstract

A two-step procedure was used to place a cryIC crystal protein gene from Bacillus thuringiensis subsp. aizawai into the chromosomes of two B. thuringiensis subsp. kurstaki strains containing multiple crystal protein genes. The B. thuringiensis aizawai cryIC gene, which encodes an insecticidal protein highly specific to Spodoptera exigua (beet armyworm), has not been found in any B. thuringiensis subsp. kurstaki strains. The cryIC gene was cloned into an integration vector which contained a B. thuringiensis chromosomal fragment encoding a phosphatidylinositol-specific phospholipase C, allowing the B. thuringiensis subsp. aizawai cryIC to be targeted to the homologous region of the B. thuringiensis subsp. kurstaki chromosome. First, to minimize the possibility of homologous recombination between cryIC and the resident crystal protein genes, B. thuringiensis subsp. kurstaki HD73, which contained only one crystal gene, was chosen as a recipient and transformed by electroporation. Second, a generalized transducing bacteriophage, CP-51, was used to transfer the integrated cryIC gene from HD73 to two other B. thuringiensis subsp. kurstaki stains. The integrated cryIC gene was expressed at a significant level in all three host strains, and the expression of cryIC did not appear to reduce the expression of the endogenous crystal protein genes. Because of the newly acquired ability to produce the CryIC protein, the recombinant strains showed a higher level of activity against S. exigua than did the parent strains. This two-step procedure should therefore be generally useful for the introduction of an additional crystal protein gene into B. thuringiensis strains which have multiple crystal protein genes and which show a low level of transformation efficiency.

Full Text

The Full Text of this article is available as a PDF (403.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arantes O., Lereclus D. Construction of cloning vectors for Bacillus thuringiensis. Gene. 1991 Dec 1;108(1):115–119. doi: 10.1016/0378-1119(91)90495-w. [DOI] [PubMed] [Google Scholar]
  3. Baum J. A., Coyle D. M., Gilbert M. P., Jany C. S., Gawron-Burke C. Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol. 1990 Nov;56(11):3420–3428. doi: 10.1128/aem.56.11.3420-3428.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calogero S., Albertini A. M., Fogher C., Marzari R., Galizzi A. Expression of a cloned Bacillus thuringiensis delta-endotoxin gene in Bacillus subtilis. Appl Environ Microbiol. 1989 Feb;55(2):446–453. doi: 10.1128/aem.55.2.446-453.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crickmore N., Nicholls C., Earp D. J., Hodgman T. C., Ellar D. J. The construction of Bacillus thuringiensis strains expressing novel entomocidal delta-endotoxin combinations. Biochem J. 1990 Aug 15;270(1):133–136. doi: 10.1042/bj2700133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delécluse A., Charles J. F., Klier A., Rapoport G. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J Bacteriol. 1991 Jun;173(11):3374–3381. doi: 10.1128/jb.173.11.3374-3381.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Errington J. A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis. J Gen Microbiol. 1986 Nov;132(11):2953–2966. doi: 10.1099/00221287-132-11-2953. [DOI] [PubMed] [Google Scholar]
  9. Gamel P. H., Piot J. C. Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids. Gene. 1992 Oct 12;120(1):17–26. doi: 10.1016/0378-1119(92)90004-9. [DOI] [PubMed] [Google Scholar]
  10. González J. M., Jr, Carlton B. C. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid. 1980 Jan;3(1):92–98. doi: 10.1016/s0147-619x(80)90038-4. [DOI] [PubMed] [Google Scholar]
  11. Haldenwang W. G., Banner C. D., Ollington J. F., Losick R., Hoch J. A., O'Connor M. B., Sonenshein A. L. Mapping a cloned gene under sporulation control by inserttion of a drug resistance marker into the Bacillus subtilis chromosome. J Bacteriol. 1980 Apr;142(1):90–98. doi: 10.1128/jb.142.1.90-98.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Honée G., van der Salm T., Visser B. Nucleotide sequence of crystal protein gene isolated from B. thuringiensis subspecies entomocidus 60.5 coding for a toxin highly active against Spodoptera species. Nucleic Acids Res. 1988 Jul 11;16(13):6240–6240. doi: 10.1093/nar/16.13.6240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kalman S., Kiehne K. L., Libs J. L., Yamamoto T. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl Environ Microbiol. 1993 Apr;59(4):1131–1137. doi: 10.1128/aem.59.4.1131-1137.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kreft J., Bernhard K., Goebel W. Recombinant plasmids capable to replication in B. subtilis and E. coli. Mol Gen Genet. 1978 Jun 1;162(1):59–67. doi: 10.1007/BF00333851. [DOI] [PubMed] [Google Scholar]
  16. Kronstad J. W., Whiteley H. R. Three classes of homologous Bacillus thuringiensis crystal-protein genes. Gene. 1986;43(1-2):29–40. doi: 10.1016/0378-1119(86)90005-3. [DOI] [PubMed] [Google Scholar]
  17. Lecadet M. M., Chaufaux J., Ribier J., Lereclus D. Construction of Novel Bacillus thuringiensis Strains with Different Insecticidal Activities by Transduction and Transformation. Appl Environ Microbiol. 1992 Mar;58(3):840–849. doi: 10.1128/aem.58.3.840-849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lechner M., Kupke T., Stefanovic S., Götz F. Molecular characterization and sequence of phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Mol Microbiol. 1989 May;3(5):621–626. doi: 10.1111/j.1365-2958.1989.tb00209.x. [DOI] [PubMed] [Google Scholar]
  19. Lereclus D., Vallade M., Chaufaux J., Arantes O., Rambaud S. Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Biotechnology (N Y) 1992 Apr;10(4):418–421. doi: 10.1038/nbt0492-418. [DOI] [PubMed] [Google Scholar]
  20. Mahler I., Halvorson H. O. Two erythromycin-resistance plasmids of diverse origin and their effect on sporulation in Bacillus subtilis. J Gen Microbiol. 1980 Sep;120(1):259–263. doi: 10.1099/00221287-120-1-259. [DOI] [PubMed] [Google Scholar]
  21. Niaudet B., Goze A., Ehrlich S. D. Insertional mutagenesis in Bacillus subtilis: mechanism and use in gene cloning. Gene. 1982 Oct;19(3):277–284. doi: 10.1016/0378-1119(82)90017-8. [DOI] [PubMed] [Google Scholar]
  22. Ochman H., Gerber A. S., Hartl D. L. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988 Nov;120(3):621–623. doi: 10.1093/genetics/120.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Piggot P. J., Curtis C. A., de Lencastre H. Use of integrational plasmid vectors to demonstrate the polycistronic nature of a transcriptional unit (spoIIA) required for sporulation of Bacillus subtilis. J Gen Microbiol. 1984 Aug;130(8):2123–2136. doi: 10.1099/00221287-130-8-2123. [DOI] [PubMed] [Google Scholar]
  24. Thorne C. B. Transducing bacteriophage for Bacillus cereus. J Virol. 1968 Jul;2(7):657–662. doi: 10.1128/jvi.2.7.657-662.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thorne C. B. Transduction in Bacillus cereus and Bacillus anthracis. Bacteriol Rev. 1968 Dec;32(4 Pt 1):358–361. [PMC free article] [PubMed] [Google Scholar]
  26. Visser B. A screening for the presence of four different crystal protein gene types in 25 Bacillus thuringiensis strains. FEMS Microbiol Lett. 1989 Apr;49(2-3):121–124. doi: 10.1016/0378-1097(89)90024-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES