Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Aug;61(8):3145–3150. doi: 10.1128/aem.61.8.3145-3150.1995

Cloning and characterization of a gene encoding a secreted tripeptidyl aminopeptidase from Streptomyces lividans 66.

M J Butler 1, C Binnie 1, M A DiZonno 1, P Krygsman 1, G A Soltes 1, G Soostmeyer 1, E Walczyk 1, L T Malek 1
PMCID: PMC167588  PMID: 7487044

Abstract

The gene encoding a tripeptidyl aminopeptidase (Tap) from Streptomyces lividans was cloned by using a simple agar plate activity assay. Overexpression of the cloned gene results in the production of a secreted protein which has an apparent subunit molecular weight of 55,000 and is responsible for the major amino-terminal degradative activity in culture broths of S. lividans strains. A DNA sequence analysis revealed a potential protein-encoding region of the size expected to encode the observed protein, which contained a sequence that exhibited significant homology around a putative active site serine residue observed for lipases, esterases, and acyl transferases. Preceding the amino terminus of the secreted protein was a predicted signal peptide of 36 amino acids followed by a tripeptide, which could be autocatalytically removed from a secreted Tap precursor. The transcriptional start site for the gene was mapped by primer extension. Mutant strains of S. lividans lacking detectable Tap activity were able to grow and sporulate normally. Cross-species hybridization experiments showed that DNA homologs of the tap gene are present in most of the Streptomyces strains tested.

Full Text

The Full Text of this article is available as a PDF (482.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Aretz W., Koller K. P., Riess G. Proteolytic enzymes from recombinant Streptomyces lividans TK24. FEMS Microbiol Lett. 1989 Nov;53(1-2):31–35. doi: 10.1016/0378-1097(89)90361-3. [DOI] [PubMed] [Google Scholar]
  3. Bender E., Koller K. P., Engels J. W. Secretory synthesis of human interleukin-2 by Streptomyces lividans. Gene. 1990 Feb 14;86(2):227–232. doi: 10.1016/0378-1119(90)90283-w. [DOI] [PubMed] [Google Scholar]
  4. Blow D. Enzymology. More of the catalytic triad. Nature. 1990 Feb 22;343(6260):694–695. doi: 10.1038/343694a0. [DOI] [PubMed] [Google Scholar]
  5. Butler M. J., Aphale J. S., Binnie C., DiZonno M. A., Krygsman P., Soltes G. A., Walczyk E., Malek L. T. The aminopeptidase N-encoding pepN gene of Streptomyces lividans 66. Gene. 1994 Apr 8;141(1):115–119. doi: 10.1016/0378-1119(94)90137-6. [DOI] [PubMed] [Google Scholar]
  6. Butler M. J., Aphale J. S., DiZonno M. A., Krygsman P., Walczyk E., Malek L. T. Intracellular aminopeptidases in Streptomyces lividans 66. J Ind Microbiol. 1994 Jan;13(1):24–29. doi: 10.1007/BF01569658. [DOI] [PubMed] [Google Scholar]
  7. Butler M. J., Bergeron A., Soostmeyer G., Zimny T., Malek L. T. Cloning and characterisation of an aminopeptidase P-encoding gene from Streptomyces lividans. Gene. 1993 Jan 15;123(1):115–119. doi: 10.1016/0378-1119(93)90549-i. [DOI] [PubMed] [Google Scholar]
  8. Butler M. J., Davey C. C., Krygsman P., Walczyk E., Malek L. T. Cloning of genetic loci involved in endoprotease activity in Streptomyces lividans 66: a novel neutral protease gene with an adjacent divergent putative regulatory gene. Can J Microbiol. 1992 Sep;38(9):912–920. doi: 10.1139/m92-148. [DOI] [PubMed] [Google Scholar]
  9. Chang P. C., Kuo T. C., Tsugita A., Lee Y. H. Extracellular metalloprotease gene of Streptomyces cacaoi: structure, nucleotide sequence and characterization of the cloned gene product. Gene. 1990 Mar 30;88(1):87–95. doi: 10.1016/0378-1119(90)90063-w. [DOI] [PubMed] [Google Scholar]
  10. Dammann T., Wohlleben W. A metalloprotease gene from Streptomyces coelicolor 'Müller' and its transcriptional activator, a member of the LysR family. Mol Microbiol. 1992 Aug;6(16):2267–2278. doi: 10.1111/j.1365-2958.1992.tb01402.x. [DOI] [PubMed] [Google Scholar]
  11. Doggett P. E., Blattner F. R. Personal access to sequence databases on personal computers. Nucleic Acids Res. 1986 Jan 10;14(1):611–619. doi: 10.1093/nar/14.1.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henderson G., Krygsman P., Liu C. J., Davey C. C., Malek L. T. Characterization and structure of genes for proteases A and B from Streptomyces griseus. J Bacteriol. 1987 Aug;169(8):3778–3784. doi: 10.1128/jb.169.8.3778-3784.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ingram C., Brawner M., Youngman P., Westpheling J. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol. 1989 Dec;171(12):6617–6624. doi: 10.1128/jb.171.12.6617-6624.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krieger T. J., Bartfeld D., Jenish D. L., Hadary D. Purification and characterization of a novel tripeptidyl aminopeptidase from Streptomyces lividans 66. FEBS Lett. 1994 Oct 3;352(3):385–388. doi: 10.1016/0014-5793(94)00988-0. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Menn F. M., Zylstra G. J., Gibson D. T. Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene. 1991 Jul 31;104(1):91–94. doi: 10.1016/0378-1119(91)90470-v. [DOI] [PubMed] [Google Scholar]
  17. Strickler J. E., Berka T. R., Gorniak J., Fornwald J., Keys R., Rowland J. J., Rosenberg M., Taylor D. P. Two novel Streptomyces protein protease inhibitors. Purification, activity, cloning, and expression. J Biol Chem. 1992 Feb 15;267(5):3236–3241. [PubMed] [Google Scholar]
  18. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  19. Tomkinson B., Jonsson A. K. Characterization of cDNA for human tripeptidyl peptidase II: the N-terminal part of the enzyme is similar to subtilisin. Biochemistry. 1991 Jan 8;30(1):168–174. doi: 10.1021/bi00215a025. [DOI] [PubMed] [Google Scholar]
  20. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES