Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Aug;61(8):3161–3164. doi: 10.1128/aem.61.8.3161-3164.1995

Salmonella enteritidis phage type 4 isolates more tolerant of heat, acid, or hydrogen peroxide also survive longer on surfaces.

T J Humphrey 1, E Slater 1, K McAlpine 1, R J Rowbury 1, R J Gilbert 1
PMCID: PMC167590  PMID: 7487046

Abstract

In a comparative study of different Salmonella enteritidis phage type 4 isolates we found that those isolates with enhanced heat tolerance also survived better than isolates that were heat sensitive either at pH 2.6, in 10 mM H2O2, or on surfaces. Culture to the stationary phase increased the heat tolerance of all isolates and the acid and H2O2 tolerance of heat-tolerant isolates. With heat-sensitive isolates, however, extended culture had no impact on survival in H2O2 and only a marginal impact on acid tolerance. The growth phase had no appreciable impact on the surface survival of any of the isolates.

Full Text

The Full Text of this article is available as a PDF (205.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker R. C., Hogarty S., Poon W., Vadehra D. V. Survival of Salmonella typhimurium and Staphylococcus aureus in eggs cooked by different methods. Poult Sci. 1983 Jul;62(7):1211–1216. doi: 10.3382/ps.0621211. [DOI] [PubMed] [Google Scholar]
  2. Beuchat L. R., Lechowich R. V. Survival of heated Streptococcus faecalis as affected by phase of growth and incubation temperature after thermal exposure. J Appl Bacteriol. 1968 Dec;31(4):414–419. doi: 10.1111/j.1365-2672.1968.tb00389.x. [DOI] [PubMed] [Google Scholar]
  3. Cooper G. E., Rowbury R. J. Virulence plasmid-associated sensitivity to acid in Escherichia coli and its possible significance in human infections. J Med Microbiol. 1986 Nov;22(3):231–236. doi: 10.1099/00222615-22-3-231. [DOI] [PubMed] [Google Scholar]
  4. Corry J. E., Barnes E. M. The heat resistance of Salmonellae in egg albumen. Br Poult Sci. 1968 Jul;9(3):253–260. doi: 10.1080/00071666808415716. [DOI] [PubMed] [Google Scholar]
  5. Cotterill O. J., Glauert J. Thermal resistance of salmonellae in egg yolk products containing sugar or salt. Poult Sci. 1969 Jul;48(4):1156–1166. doi: 10.3382/ps.0481156. [DOI] [PubMed] [Google Scholar]
  6. Dabbah R., Moats W. A., Edwards V. M. Survivor curves of selected Salmonella enteritidis serotypes in liquid whole egg homogenates at 60oC. Poult Sci. 1971 Nov;50(6):1772–1776. doi: 10.3382/ps.0501772. [DOI] [PubMed] [Google Scholar]
  7. Foster J. W., Hall H. K. Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol. 1990 Feb;172(2):771–778. doi: 10.1128/jb.172.2.771-778.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foster J. W. Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol. 1991 Nov;173(21):6896–6902. doi: 10.1128/jb.173.21.6896-6902.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Humphrey T. J. Heat resistance in Salmonella enteritidis phage type 4: the influence of storage temperatures before heating. J Appl Bacteriol. 1990 Oct;69(4):493–497. doi: 10.1111/j.1365-2672.1990.tb01540.x. [DOI] [PubMed] [Google Scholar]
  10. Humphrey T. J., Richardson N. P., Statton K. M., Rowbury R. J. Effects of temperature shift on acid and heat tolerance in Salmonella enteritidis phage type 4. Appl Environ Microbiol. 1993 Sep;59(9):3120–3122. doi: 10.1128/aem.59.9.3120-3122.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jenkins D. E., Schultz J. E., Matin A. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol. 1988 Sep;170(9):3910–3914. doi: 10.1128/jb.170.9.3910-3914.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kolter R., Siegele D. A., Tormo A. The stationary phase of the bacterial life cycle. Annu Rev Microbiol. 1993;47:855–874. doi: 10.1146/annurev.mi.47.100193.004231. [DOI] [PubMed] [Google Scholar]
  13. Leyer G. J., Johnson E. A. Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol. 1993 Jun;59(6):1842–1847. doi: 10.1128/aem.59.6.1842-1847.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leyer G. J., Johnson E. A. Acid adaptation promotes survival of Salmonella spp. in cheese. Appl Environ Microbiol. 1992 Jun;58(6):2075–2080. doi: 10.1128/aem.58.6.2075-2080.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mackey B. M., Derrick C. M. Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. J Appl Bacteriol. 1986 Nov;61(5):389–393. doi: 10.1111/j.1365-2672.1986.tb04301.x. [DOI] [PubMed] [Google Scholar]
  16. Morgan R. W., Christman M. F., Jacobson F. S., Storz G., Ames B. N. Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8059–8063. doi: 10.1073/pnas.83.21.8059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Völker U., Mach H., Schmid R., Hecker M. Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis. J Gen Microbiol. 1992 Oct;138(10):2125–2135. doi: 10.1099/00221287-138-10-2125. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES