Abstract
Pig fecal slurries converted added L-tryptophan either to indole without detectable intermediates or to 3-methylindole (skatole) via indole-3-acetate. The initial rate of production of 3-methylindole was greatest at pH 6.5 and less at pH 5.0 and 8.0; the initial rates of indole production were similar at pH 6.5 and 8.0. More than 80% of the tryptophan added was converted to 3-methylindole at pH 5.0; at pH 8.0 85% was converted to indole. Both pathways had similar Km values for tryptophan and similar maximum rates. Indole-3-carbinol and indole-3-acetonitrile completely inhibited the production of 3-methylindole from indole-3-acetate but had no effect on the reactions involving L-tryptophan.
Full Text
The Full Text of this article is available as a PDF (276.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carlson J. R., Yokoyama M. T., Dickinson E. O. Induction of pulmonary edema and emphysema in cattle and goats with 3-methylindole. Science. 1972 Apr 21;176(4032):298–299. doi: 10.1126/science.176.4032.298. [DOI] [PubMed] [Google Scholar]
- Chung K. T., Anderson G. M., Fulk G. E. Formation of indoleacetic acid by intestinal anaerobes. J Bacteriol. 1975 Oct;124(1):573–575. doi: 10.1128/jb.124.1.573-575.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fellers C. R., Clough R. W. INDOL AND SKATOL DETERMINATION IN BACTERIAL CULTURES. J Bacteriol. 1925 Mar;10(2):105–133. doi: 10.1128/jb.10.2.105-133.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammond A. C., Carlson J. R. Inhibition of ruminal degradation of L-tryptophan to 3-methylindole, in vitro. J Anim Sci. 1980 Jul;51(1):207–214. doi: 10.2527/jas1980.511207x. [DOI] [PubMed] [Google Scholar]
- Honeyfield D. C., Carlson J. R. Assay for the enzymatic conversion of indoleacetic acid to 3-methylindole in a ruminal Lactobacillus species. Appl Environ Microbiol. 1990 Mar;56(3):724–729. doi: 10.1128/aem.56.3.724-729.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen B. B., Jørgensen H. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl Environ Microbiol. 1994 Jun;60(6):1897–1904. doi: 10.1128/aem.60.6.1897-1904.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen M. T., Jensen B. B. Gas chromatographic determination of indole and 3-methylindole (skatole) in bacterial culture media, intestinal contents and faeces. J Chromatogr B Biomed Appl. 1994 May 13;655(2):275–280. doi: 10.1016/0378-4347(94)00065-4. [DOI] [PubMed] [Google Scholar]
- ROSENBERGER R. F. Obligate anaerobes which form skatole. J Bacteriol. 1959 Apr;77(4):517–517. doi: 10.1128/jb.77.4.517-517.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spray R. S. Three New Species of the Genus Clostridium. J Bacteriol. 1948 Jun;55(6):839–842. doi: 10.1128/jb.55.6.839-842.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoyama M. T., Carlson J. R. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro. Appl Microbiol. 1974 Mar;27(3):540–548. doi: 10.1128/am.27.3.540-548.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoyama M. T., Carlson J. R., Holdeman L. V. Isolation and characteristics of a skatole-producing Lactobacillus sp. from the bovine rumen. Appl Environ Microbiol. 1977 Dec;34(6):837–842. doi: 10.1128/aem.34.6.837-842.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoyama M. T., Carlson J. R. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am J Clin Nutr. 1979 Jan;32(1):173–178. doi: 10.1093/ajcn/32.1.173. [DOI] [PubMed] [Google Scholar]
- Yokoyama M. T., Carlson J. R. Production of Skatole and para-Cresol by a Rumen Lactobacillus sp. Appl Environ Microbiol. 1981 Jan;41(1):71–76. doi: 10.1128/aem.41.1.71-76.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]