Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Sep;61(9):3240–3244. doi: 10.1128/aem.61.9.3240-3244.1995

Alasan, a new bioemulsifier from Acinetobacter radioresistens.

S Navon-Venezia 1, Z Zosim 1, A Gottlieb 1, R Legmann 1, S Carmeli 1, E Z Ron 1, E Rosenberg 1
PMCID: PMC167603  PMID: 7574633

Abstract

Acinetobacter radioresistens KA53, isolated by enrichment culture, was found to produce an extracellular, nondialyzable emulsifying agent (referred to as alasan) when grown on ethanol medium in a batch-fed reactor. The crude emulsifier was concentrated from the cell-free culture fluid by ammonium sulfate precipitation to yield 2.2 g of emulsifier per liter. Alasan stabilized a variety of oil-in-water emulsions, including n-alkanes with chain lengths of 10 or higher, alkyl aromatics, liquid paraffin, soybean and coconut oils, and crude oil. Alasan was 2.5 to 3.0 times more active after being heated at 100 degrees C under neutral or alkaline conditions. Emulsifying activity was observed over the entire pH range studied (pH 3.3 to 9.2), with a clear maximum at pH 5.0. Magnesium ions stimulated the activity both below (pH 3.3 to 4.5) and above (pH 5.5 to 9.3) the pH optimum. Alasan activity was higher in 20 mM citrate than in 20 mM acetate or Tris-HCl buffer. Preliminary chemical characterization of alasan indicated that it is a complex of an anionic, high-molecular-weight, alanine-containing heteropolysaccharide and protein.

Full Text

The Full Text of this article is available as a PDF (190.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson M., Ratnayake S., Kenne L., Ericsson L., Stack R. J. Structural studies of the extracellular polysaccharide from Butyrivibrio fibrisolvens strain X6C61. Carbohydr Res. 1993 Aug 17;246:291–301. doi: 10.1016/0008-6215(93)84041-4. [DOI] [PubMed] [Google Scholar]
  2. Belsky I., Gutnick D. L., Rosenberg E. Emulsifier of Arthrobacter RAG-1: determination of emulsifier-bound fatty acids. FEBS Lett. 1979 May 1;101(1):175–178. doi: 10.1016/0014-5793(79)81320-4. [DOI] [PubMed] [Google Scholar]
  3. Dengler T., Jann B., Jann K. Structure of the serine-containing capsular polysaccharide K40 antigen from Escherichia coli O8:K40:H9. Carbohydr Res. 1986 Aug 1;150:233–240. doi: 10.1016/0008-6215(86)80019-2. [DOI] [PubMed] [Google Scholar]
  4. Gal A. E. Separation and identification of monosaccharides from biological materials by thin-layer chromatography. Anal Biochem. 1968 Sep;24(3):452–461. doi: 10.1016/0003-2697(68)90152-8. [DOI] [PubMed] [Google Scholar]
  5. Goldman S., Shabtai Y., Rubinovitz C., Rosenberg E., Gutnick D. L. Emulsan in Acinetobacter calcoaceticus RAG-1: Distribution of Cell-Free and Cell-Associated Cross-Reacting Material. Appl Environ Microbiol. 1982 Jul;44(1):165–170. doi: 10.1128/aem.44.1.165-170.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Juni E. Genetics and physiology of Acinetobacter. Annu Rev Microbiol. 1978;32:349–371. doi: 10.1146/annurev.mi.32.100178.002025. [DOI] [PubMed] [Google Scholar]
  7. Juni E., Janik A. Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). J Bacteriol. 1969 Apr;98(1):281–288. doi: 10.1128/jb.98.1.281-288.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaplan N., Rosenberg E. Exopolysaccharide Distribution of and Bioemulsifier Production by Acinetobacter calcoaceticus BD4 and BD413. Appl Environ Microbiol. 1982 Dec;44(6):1335–1341. doi: 10.1128/aem.44.6.1335-1341.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaplan N., Rosenberg E., Jann B., Jann K. Structural studies of the capsular polysaccharide of Acinetobacter calcoaceticus BD4. Eur J Biochem. 1985 Oct 15;152(2):453–458. doi: 10.1111/j.1432-1033.1985.tb09218.x. [DOI] [PubMed] [Google Scholar]
  10. Kaplan N., Zosim Z., Rosenberg E. Reconstitution of emulsifying activity of Acinetobacter calcoaceticus BD4 emulsan by using pure polysaccharide and protein. Appl Environ Microbiol. 1987 Feb;53(2):440–446. doi: 10.1128/aem.53.2.440-446.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  12. Neu T. R., Marshall K. C. Bacterial polymers: physicochemical aspects of their interactions at interfaces. J Biomater Appl. 1990 Oct;5(2):107–133. doi: 10.1177/088532829000500203. [DOI] [PubMed] [Google Scholar]
  13. Rosenberg E., Perry A., Gibson D. T., Gutnick D. L. Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate. Appl Environ Microbiol. 1979 Mar;37(3):409–413. doi: 10.1128/aem.37.3.409-413.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rubinovitz C., Gutnick D. L., Rosenberg E. Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol. J Bacteriol. 1982 Oct;152(1):126–132. doi: 10.1128/jb.152.1.126-132.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zuckerberg A., Diver A., Peeri Z., Gutnick D. L., Rosenberg E. Emulsifier of Arthrobacter RAG-1: chemical and physical properties. Appl Environ Microbiol. 1979 Mar;37(3):414–420. doi: 10.1128/aem.37.3.414-420.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES