Abstract
An anaerobic diplococcoid bacterium able to degrade hydrolyzable tannins was isolated from the ruminal fluid of a goat fed desmodium (Desmodium ovalifolium), a tropical legume which contains levels as high as 17% condensed tannins. This strain grew under anaerobic conditions in the presence of up to 30 g of tannic acid per liter and tolerated a range of phenolic monomers, including gallic, ferulic, and p-coumaric acids. The predominant fermentation product from tannic acid breakdown was pyrogallol, as detected by high-performance liquid chromatography and mass spectrometry. Tannic acid degradation was dependent on the presence of a sugar such as glucose, fructose, arabinose, sucrose, galactose, cellobiose, or soluble starch as an added carbon and energy source. The strain also demonstrated resistance to condensed tannins up to a level of 4 g/liter.
Full Text
The Full Text of this article is available as a PDF (362.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bae H. D., McAllister T. A., Yanke J., Cheng K. J., Muir A. D. Effects of Condensed Tannins on Endoglucanase Activity and Filter Paper Digestion by Fibrobacter succinogenes S85. Appl Environ Microbiol. 1993 Jul;59(7):2132–2138. doi: 10.1128/aem.59.7.2132-2138.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borneman W. S., Akin D. E., VanEseltine W. P. Effect of phenolic monomers on ruminal bacteria. Appl Environ Microbiol. 1986 Dec;52(6):1331–1339. doi: 10.1128/aem.52.6.1331-1339.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryant M. P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972 Dec;25(12):1324–1328. doi: 10.1093/ajcn/25.12.1324. [DOI] [PubMed] [Google Scholar]
- Chesson A., Stewart C. S., Wallace R. J. Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria. Appl Environ Microbiol. 1982 Sep;44(3):597–603. doi: 10.1128/aem.44.3.597-603.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HENIS Y., TAGARI H., VOLCANI R. EFFECT OF WATER EXTRACTS OF CAROB PODS, TANNIC ACID, AND THEIR DERIVATIVES ON THE MORPHOLOGY AND GROWTH OF MICROORGANISMS. Appl Microbiol. 1964 May;12:204–209. doi: 10.1128/am.12.3.204-209.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNGATE R. E. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev. 1950 Mar;14(1):1–49. doi: 10.1128/br.14.1.1-49.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagerman A. E., Butler L. G. Assay of condensed tannins or flavonoid oligomers and related flavonoids in plants. Methods Enzymol. 1994;234:429–437. doi: 10.1016/0076-6879(94)34113-3. [DOI] [PubMed] [Google Scholar]
- Halsam E., Lilley T. H. Natural astringency in foodstuffs--a molecular interpretation. Crit Rev Food Sci Nutr. 1988;27(1):1–40. doi: 10.1080/10408398809527476. [DOI] [PubMed] [Google Scholar]
- Jones G. A., McAllister T. A., Muir A. D., Cheng K. J. Effects of Sainfoin (Onobrychis viciifolia Scop.) Condensed Tannins on Growth and Proteolysis by Four Strains of Ruminal Bacteria. Appl Environ Microbiol. 1994 Apr;60(4):1374–1378. doi: 10.1128/aem.60.4.1374-1378.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl Environ Microbiol. 1978 Jun;35(6):1166–1173. doi: 10.1128/aem.35.6.1166-1173.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osawa R., Mitsuoka T. Selective Medium for Enumeration of Tannin-Protein Complex-Degrading Streptococcus spp. in Feces of Koalas. Appl Environ Microbiol. 1990 Nov;56(11):3609–3611. doi: 10.1128/aem.56.11.3609-3611.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osawa R. Tannin-protein complex-degrading enterobacteria isolated from the alimentary tracts of koalas and a selective medium for their enumeration. Appl Environ Microbiol. 1992 May;58(5):1754–1759. doi: 10.1128/aem.58.5.1754-1759.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pell A. N., Schofield P. Computerized monitoring of gas production to measure forage digestion in vitro. J Dairy Sci. 1993 Apr;76(4):1063–1073. doi: 10.3168/jds.S0022-0302(93)77435-4. [DOI] [PubMed] [Google Scholar]
- Russell J. B. A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: effects on ion flux and protonmotive force. J Anim Sci. 1987 May;64(5):1519–1525. doi: 10.2527/jas1987.6451519x. [DOI] [PubMed] [Google Scholar]
- Schaefer D. M., Davis C. L., Bryant M. P. Ammonia saturation constants for predominant species of rumen bacteria. J Dairy Sci. 1980 Aug;63(8):1248–1263. doi: 10.3168/jds.S0022-0302(80)83076-1. [DOI] [PubMed] [Google Scholar]
- Schofield P., Pitt R. E., Pell A. N. Kinetics of fiber digestion from in vitro gas production. J Anim Sci. 1994 Nov;72(11):2980–2991. doi: 10.2527/1994.72112980x. [DOI] [PubMed] [Google Scholar]
- Sedhom L., Weiczorek R. R., Stepanyk W., Britton S., Clarke L., Torres G. The interactive seminar: an educational approach for voluntary HIV testing in a drug dependence treatment unit. J Prof Nurs. 1994 Sep-Oct;10(5):313–318. doi: 10.1016/8755-7223(94)90057-4. [DOI] [PubMed] [Google Scholar]
- Tsai C. G., Jones G. A. Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can J Microbiol. 1975 Jun;21(6):794–801. doi: 10.1139/m75-117. [DOI] [PubMed] [Google Scholar]
- Zwietering M. H., Jongenburger I., Rombouts F. M., van 't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990 Jun;56(6):1875–1881. doi: 10.1128/aem.56.6.1875-1881.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
