Abstract
Pyrithione is a general inhibitor of membrane transport in fungi and is widely used in antidandruff shampoos as an antifungal agent. An electrophysiological approach has been used to determine the mode of action of pyrithione on the plasma membrane of the model ascomycete, Neurospora crassa. At pH 5.8, pyrithione induces a dramatic dose-dependent electrical depolarization of the membrane which is complete within 4 min, amounts to 110 mV at saturating pyrithione concentrations, and is half maximal between 0.6 and 0.8 mM pyrithione. Zinc pyrithione induces a similar response but exerts a half-maximal effect at around 0.3 mM. The depolarization is strongly dependent on external pH, being almost absent at pH 8.2, at which the concentration of the uncharged form of pyrithione--which might be expected to permeate the membrane freely--is markedly lowered. However, quantitative considerations based on cytosolic buffer capacity, the pKa of pyrithione, and the submillimolar concentration at which it is active appear to preclude significant cytosolic acidification on dissociation of the thiol proton from the uncharged form of pyrithione. Current-voltage analysis demonstrates that the depolarization is accompanied by a decrease in membrane electrical conductance in a manner consistent with inhibition of the primary proton pump and inconsistent with a mode of action of pyrithione on plasma membrane ion channels. We conclude that pyrithione inhibits membrane transport via a direct or indirect effect on the primary proton pump which energizes transport and that the site of action of pyrithione is likely to be intra- rather than extracellular.
Full Text
The Full Text of this article is available as a PDF (204.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brooker R. J., Slayman C. W. Inhibition of the plasma membrane [H+]-ATPase of Neurospora crassa by N-ethylmaleimide. Protection by nucleotides. J Biol Chem. 1982 Oct 25;257(20):12051–12055. [PubMed] [Google Scholar]
- Chandler C. J., Segel I. H. Mechanism of the antimicrobial action of pyrithione: effects on membrane transport, ATP levels, and protein synthesis. Antimicrob Agents Chemother. 1978 Jul;14(1):60–68. doi: 10.1128/aac.14.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooney J. J. Effects of polyurethane foams on microbial growth in fuel-water systems. Appl Microbiol. 1969 Feb;17(2):227–231. doi: 10.1128/am.17.2.227-231.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gradmann D., Hansen U. P., Long W. S., Slayman C. L., Warncke J. Current-voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa: I. Steady-state conditions. J Membr Biol. 1978 Mar 20;39(4):333–367. doi: 10.1007/BF01869898. [DOI] [PubMed] [Google Scholar]
- Khattar M. M., Salt W. G., Stretton R. J. Growth and survival of Klebsiella pneumoniae in the presence of pyrithione. J Chemother. 1989 Jul;1(4 Suppl):224–226. [PubMed] [Google Scholar]
- Khattar M. M., Salt W. G., Stretton R. J. The influence of pyrithione on the growth of micro-organisms. J Appl Bacteriol. 1988 Mar;64(3):265–272. doi: 10.1111/j.1365-2672.1988.tb03384.x. [DOI] [PubMed] [Google Scholar]
- Monk B. C., Perlin D. S. Fungal plasma membrane proton pumps as promising new antifungal targets. Crit Rev Microbiol. 1994;20(3):209–223. doi: 10.3109/10408419409114555. [DOI] [PubMed] [Google Scholar]
- Palmgren M. G., Sommarin M., Serrano R., Larsson C. Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H(+)-ATPase. J Biol Chem. 1991 Oct 25;266(30):20470–20475. [PubMed] [Google Scholar]
- Portillo F., Serrano R. Growth control strength and active site of yeast plasma membrane ATPase studied by site-directed mutagenesis. Eur J Biochem. 1989 Dec 22;186(3):501–507. doi: 10.1111/j.1432-1033.1989.tb15235.x. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Sanders D., Hansen U. P., Gradmann D., Slayman C. L. Generalized kinetic analysis of ion-driven cotransport systems: a unified interpretation of selective ionic effects on Michaelis parameters. J Membr Biol. 1984;77(2):123–152. doi: 10.1007/BF01925862. [DOI] [PubMed] [Google Scholar]
- Sanders D., Hansen U. P., Slayman C. L. Role of the plasma membrane proton pump in pH regulation in non-animal cells. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5903–5907. doi: 10.1073/pnas.78.9.5903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders D., Slayman C. L. Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora. J Gen Physiol. 1982 Sep;80(3):377–402. doi: 10.1085/jgp.80.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serrano R., Kielland-Brandt M. C., Fink G. R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature. 1986 Feb 20;319(6055):689–693. doi: 10.1038/319689a0. [DOI] [PubMed] [Google Scholar]
- Serrano R., Portillo F., Monk B. C., Palmgren M. G. The regulatory domain of fungal and plant plasma membrane H(+)-ATPase. Acta Physiol Scand Suppl. 1992;607:131–136. [PubMed] [Google Scholar]
- Shuster S. The aetiology of dandruff and the mode of action of therapeutic agents. Br J Dermatol. 1984 Aug;111(2):235–242. doi: 10.1111/j.1365-2133.1984.tb04050.x. [DOI] [PubMed] [Google Scholar]
- Slayman C. L. Electrical properties of Neurospora crassa. Effects of external cations on the intracellular potential. J Gen Physiol. 1965 Sep;49(1):69–92. doi: 10.1085/jgp.49.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slayman C. L., Long W. S., Lu C. Y. The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol. 1973;14(4):305–338. doi: 10.1007/BF01868083. [DOI] [PubMed] [Google Scholar]