Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Oct;61(10):3567–3572. doi: 10.1128/aem.61.10.3567-3572.1995

Unidirectional motility of Escherichia coli in restrictive capillaries.

Z Liu 1, K D Papadopoulos 1
PMCID: PMC167651  PMID: 7486991

Abstract

In a 6-microns capillary filled with buffer and in the absence of any chemotactic stimuli, Escherichia coli K-12 cells swim persistently in only one direction. This behavior of E. coli can be simply explained by means of the length and relative rigidity of their flagella. Single-cell motility parameters--swimming speed, turn angle, and run length time--were measured. Compared with the motility parameters measured in bulk phase, turn angle was influenced because of the effect of the geometrical restriction.

Full Text

The Full Text of this article is available as a PDF (603.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol. 1973 Jan;74(1):77–91. doi: 10.1099/00221287-74-1-77. [DOI] [PubMed] [Google Scholar]
  2. Adler J., Templeton B. The effect of environmental conditions on the motility of Escherichia coli. J Gen Microbiol. 1967 Feb;46(2):175–184. doi: 10.1099/00221287-46-2-175. [DOI] [PubMed] [Google Scholar]
  3. Berg H. C., Anderson R. A. Bacteria swim by rotating their flagellar filaments. Nature. 1973 Oct 19;245(5425):380–382. doi: 10.1038/245380a0. [DOI] [PubMed] [Google Scholar]
  4. Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature. 1972 Oct 27;239(5374):500–504. doi: 10.1038/239500a0. [DOI] [PubMed] [Google Scholar]
  5. Berg H. C. Dynamic properties of bacterial flagellar motors. Nature. 1974 May 3;249(452):77–79. doi: 10.1038/249077a0. [DOI] [PubMed] [Google Scholar]
  6. Berg H. C., Turner L. Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. Biophys J. 1990 Oct;58(4):919–930. doi: 10.1016/S0006-3495(90)82436-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burchard R. P., Rittschof D., Bonaventura J. Adhesion and motility of gliding bacteria on substrata with different surface free energies. Appl Environ Microbiol. 1990 Aug;56(8):2529–2534. doi: 10.1128/aem.56.8.2529-2534.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chwang A. T., Wu T. Y. A note on the helical movement of micro-organisms. Proc R Soc Lond B Biol Sci. 1971 Aug 3;178(1052):327–346. doi: 10.1098/rspb.1971.0068. [DOI] [PubMed] [Google Scholar]
  9. Coakley C. J., Holwill M. E. Propulsion of micro-organisms by three-dimensional flagellar waves. J Theor Biol. 1972 Jun;35(3):525–542. doi: 10.1016/0022-5193(72)90149-x. [DOI] [PubMed] [Google Scholar]
  10. Gannon J. T., Manilal V. B., Alexander M. Relationship between Cell Surface Properties and Transport of Bacteria through Soil. Appl Environ Microbiol. 1991 Jan;57(1):190–193. doi: 10.1128/aem.57.1.190-193.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greenberg E. P., Canale-Parola E. Motility of flagellated bacteria in viscous environments. J Bacteriol. 1977 Oct;132(1):356–358. doi: 10.1128/jb.132.1.356-358.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harkes G., Dankert J., Feijen J. Bacterial migration along solid surfaces. Appl Environ Microbiol. 1992 May;58(5):1500–1505. doi: 10.1128/aem.58.5.1500-1505.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jenkins M. B., Lion L. W. Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media. Appl Environ Microbiol. 1993 Oct;59(10):3306–3313. doi: 10.1128/aem.59.10.3306-3313.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Larsen S. H., Reader R. W., Kort E. N., Tso W. W., Adler J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature. 1974 May 3;249(452):74–77. doi: 10.1038/249074a0. [DOI] [PubMed] [Google Scholar]
  15. Macnab R. M., Han D. P. Asynchronous switching of flagellar motors on a single bacterial cell. Cell. 1983 Jan;32(1):109–117. doi: 10.1016/0092-8674(83)90501-9. [DOI] [PubMed] [Google Scholar]
  16. Macnab R. M., Koshland D. E., Jr The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2509–2512. doi: 10.1073/pnas.69.9.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Macnab R. M., Ornston M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J Mol Biol. 1977 May 5;112(1):1–30. doi: 10.1016/s0022-2836(77)80153-8. [DOI] [PubMed] [Google Scholar]
  18. Othmer H. G., Dunbar S. R., Alt W. Models of dispersal in biological systems. J Math Biol. 1988;26(3):263–298. doi: 10.1007/BF00277392. [DOI] [PubMed] [Google Scholar]
  19. Reynolds P. J., Sharma P., Jenneman G. E., McInerney M. J. Mechanisms of microbial movement in subsurface materials. Appl Environ Microbiol. 1989 Sep;55(9):2280–2286. doi: 10.1128/aem.55.9.2280-2286.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schneider W. R., Doetsch R. N. Effect of viscosity on bacterial motility. J Bacteriol. 1974 Feb;117(2):696–701. doi: 10.1128/jb.117.2.696-701.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schreiner K. E. The helix as propeller of microorganisms. J Biomech. 1971 Jan;4(1):73–83. doi: 10.1016/0021-9290(71)90017-0. [DOI] [PubMed] [Google Scholar]
  22. Sharma P. K., McInerney M. J. Effect of grain size on bacterial penetration, reproduction, and metabolic activity in porous glass bead chambers. Appl Environ Microbiol. 1994 May;60(5):1481–1486. doi: 10.1128/aem.60.5.1481-1486.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Silverman M., Simon M. Flagellar rotation and the mechanism of bacterial motility. Nature. 1974 May 3;249(452):73–74. doi: 10.1038/249073a0. [DOI] [PubMed] [Google Scholar]
  24. Weis R. M., Koshland D. E., Jr Chemotaxis in Escherichia coli proceeds efficiently from different initial tumble frequencies. J Bacteriol. 1990 Feb;172(2):1099–1105. doi: 10.1128/jb.172.2.1099-1105.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES