Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Oct;61(10):3604–3608. doi: 10.1128/aem.61.10.3604-3608.1995

The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae.

T Imai 1, T Ohno 1
PMCID: PMC167657  PMID: 7486996

Abstract

The relationship between viability (cell proliferation activity) and intracellular pH in the yeast Saccharomyces cerevisiae was investigated by using cells that had been deactivated by low-temperature storage, ethanol treatment, or heat treatment. The intracellular pH was measured with a microscopic image processor or a spectrofluorophotometer. At first, the intracellular pH measurements of individual cells were compared with slide culture results by microscopic image processing. A clear correlation existed between the proliferation activity and intracellular pH. Moreover, by spectrofluorophotometry analysis, it was found that there was a relationship between the viability and intracellular pH of brewing yeast under conditions of low external pH (n = 15, r = 0.960, P = 0.001). This relationship was also observed in baker's yeast (n = 13, r = 0.950, P = 0.001). On the other hand, when the fluorescein staining method was used in these experiments, the relationship between viability and staining percentage was not observed. From these results, intracellular pH was found to be a sensitive factor for estimating yeast physiology. The possible role of cell deterioration is also discussed.

Full Text

The Full Text of this article is available as a PDF (760.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breeuwer P., Drocourt J. L., Rombouts F. M., Abee T. Energy-dependent, carrier-mediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow cytometry. Appl Environ Microbiol. 1994 May;60(5):1467–1472. doi: 10.1128/aem.60.5.1467-1472.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cartwright C. P., Veazey F. J., Rose A. H. Effect of ethanol on activity of the plasma-membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae. J Gen Microbiol. 1987 Apr;133(4):857–865. doi: 10.1099/00221287-133-4-857. [DOI] [PubMed] [Google Scholar]
  3. Cockburn M., Earnshaw P., Eddy A. A. The stoicheiometry of the absorption of protons with phosphate and L-glutamate by yeasts of the genus Saccharomyces. Biochem J. 1975 Mar;146(3):705–712. doi: 10.1042/bj1460705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eddy A. A., Nowacki J. A. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis. Biochem J. 1971 May;122(5):701–711. doi: 10.1042/bj1220701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fosset M., Muir L. W., Nielsen L. D., Fischer E. H. Purification and properties of yeast glycogen phosphorylase a and b. Biochemistry. 1971 Oct 26;10(22):4105–4113. doi: 10.1021/bi00798a015. [DOI] [PubMed] [Google Scholar]
  6. Goffeau A., Slayman C. W. The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta. 1981 Dec 30;639(3-4):197–223. doi: 10.1016/0304-4173(81)90010-0. [DOI] [PubMed] [Google Scholar]
  7. Imai T., Ohno T. Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J Biotechnol. 1995 Jan 15;38(2):165–172. doi: 10.1016/0168-1656(94)00130-5. [DOI] [PubMed] [Google Scholar]
  8. Londesborough J., Varimo K. Characterization of two trehalases in baker's yeast. Biochem J. 1984 Apr 15;219(2):511–518. doi: 10.1042/bj2190511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Müller D., Holzer H. Regulation of fructose-1,6-bisphosphatase in yeast by phosphorylation/dephosphorylation. Biochem Biophys Res Commun. 1981 Dec 15;103(3):926–933. doi: 10.1016/0006-291x(81)90899-8. [DOI] [PubMed] [Google Scholar]
  10. Noshiro A., Purwin C., Laux M., Nicolay K., Scheffers W. A., Holzer H. Mechanism of stimulation of endogenous fermentation in yeast by carbonyl cyanide m-chlorophenylhydrazone. J Biol Chem. 1987 Oct 15;262(29):14154–14157. [PubMed] [Google Scholar]
  11. Paton A. M., Jones S. M. The observation and enumeration of micro-organisms in fluids using membrane filtration and incident fluorescence microscopy. J Appl Bacteriol. 1975 Apr;38(2):199–200. doi: 10.1111/j.1365-2672.1975.tb00522.x. [DOI] [PubMed] [Google Scholar]
  12. Piper P. W., Talreja K., Panaretou B., Moradas-Ferreira P., Byrne K., Praekelt U. M., Meacock P., Récnacq M., Boucherie H. Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology. 1994 Nov;140(Pt 11):3031–3038. doi: 10.1099/13500872-140-11-3031. [DOI] [PubMed] [Google Scholar]
  13. Portillo F., Serrano R. Growth control strength and active site of yeast plasma membrane ATPase studied by site-directed mutagenesis. Eur J Biochem. 1989 Dec 22;186(3):501–507. doi: 10.1111/j.1432-1033.1989.tb15235.x. [DOI] [PubMed] [Google Scholar]
  14. Rosa M. F., Sá-Correia I. In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl Environ Microbiol. 1991 Mar;57(3):830–835. doi: 10.1128/aem.57.3.830-835.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rotman B., Papermaster B. W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A. 1966 Jan;55(1):134–141. doi: 10.1073/pnas.55.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Seaston A., Inkson C., Eddy A. A. The absorption of protons with specific amino acids and carbohydrates by yeast. Biochem J. 1973 Aug;134(4):1031–1043. doi: 10.1042/bj1341031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Serrano R. Effect of ATPase inhibitors on the proton pump of respiratory-deficient yeast. Eur J Biochem. 1980 Apr;105(2):419–424. doi: 10.1111/j.1432-1033.1980.tb04516.x. [DOI] [PubMed] [Google Scholar]
  18. Serrano R. Energy requirements for maltose transport in yeast. Eur J Biochem. 1977 Oct 17;80(1):97–102. doi: 10.1111/j.1432-1033.1977.tb11861.x. [DOI] [PubMed] [Google Scholar]
  19. Serrano R., Kielland-Brandt M. C., Fink G. R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature. 1986 Feb 20;319(6055):689–693. doi: 10.1038/319689a0. [DOI] [PubMed] [Google Scholar]
  20. Serrano R. Plasma membrane ATPase of fungi and plants as a novel type of proton pump. Curr Top Cell Regul. 1984;23:87–126. doi: 10.1016/b978-0-12-152823-2.50007-6. [DOI] [PubMed] [Google Scholar]
  21. Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta. 1988 Feb 24;947(1):1–28. doi: 10.1016/0304-4157(88)90017-2. [DOI] [PubMed] [Google Scholar]
  22. Takai Y., Sakai K., Morishita Y., Yamamura H., Nishizuka Y. Functional similarity of yeast and mammalian adenosine 3',5'-monophosphate-dependent protein kinases. Biochem Biophys Res Commun. 1974 Jul 24;59(2):646–652. doi: 10.1016/s0006-291x(74)80028-8. [DOI] [PubMed] [Google Scholar]
  23. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  24. Viegas C. A., Sá-Correia I. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol. 1991 Mar;137(3):645–651. doi: 10.1099/00221287-137-3-645. [DOI] [PubMed] [Google Scholar]
  25. Weitzel G., Pilatus U., Rensing L. The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast. Exp Cell Res. 1987 May;170(1):64–79. doi: 10.1016/0014-4827(87)90117-0. [DOI] [PubMed] [Google Scholar]
  26. Yamashoji S., Hess B. Activation of yeast 6-phosphofructo-2-kinase by protein kinase and phosphate. FEBS Lett. 1984 Dec 10;178(2):253–256. doi: 10.1016/0014-5793(84)80611-0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES