Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Nov;61(11):3775–3780. doi: 10.1128/aem.61.11.3775-3780.1995

Extracellular enzyme synthesis in a sporulation-deficient strain of Bacillus licheniformis.

A B Fleming 1, M Tangney 1, P L Jørgensen 1, B Diderichsen 1, F G Priest 1
PMCID: PMC167678  PMID: 8526485

Abstract

A deletion of the spoIIAC gene of Bacillus licheniformis was prepared in vitro by using the splicing-by-overlap-extension technique. This gene was introduced into B. licheniformis on a temperature-sensitive plasmid, and following integration and excision from the chromosome, a precisely located deletion on the chromosomal gene was prepared. The mutated bacterium was totally asporogenous and formed abortively disporic cells characterized by asymmetric septa at the poles of the cells. Qualitative plate tests revealed that the bacterium synthesized normal levels of DNase, polygalacturonate lyase, protease, RNase, and xylanase, but the hydrolysis zones due to beta-1,3-glucanase and carboxymethyl cellulase activity were smaller in the mutant than in the parent strain. The synthesis of alkaline protease was the same in batch cultures of the mutant and the parent during prolonged incubation for 72 h, but the alpha-amylase yields were reduced by about 30% by the mutation.

Full Text

The Full Text of this article is available as a PDF (489.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquino de Muro M., Mitchell W. J., Priest F. G. Differentiation of mosquito-pathogenic strains of Bacillus sphaericus from non-toxic varieties by ribosomal RNA gene restriction patterns. J Gen Microbiol. 1992 Jun;138(6):1159–1166. doi: 10.1099/00221287-138-6-1159. [DOI] [PubMed] [Google Scholar]
  2. Biswas I., Gruss A., Ehrlich S. D., Maguin E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol. 1993 Jun;175(11):3628–3635. doi: 10.1128/jb.175.11.3628-3635.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coote J. G. Sporulation in Bacillus subtilis. Characterization of oligosporogenous mutants and comparison of their phenotypes with those of asporogenous mutants. J Gen Microbiol. 1972 Jun;71(1):1–15. doi: 10.1099/00221287-71-1-1. [DOI] [PubMed] [Google Scholar]
  4. Coppolecchia R., DeGrazia H., Moran C. P., Jr Deletion of spoIIAB blocks endospore formation in Bacillus subtilis at an early stage. J Bacteriol. 1991 Nov;173(21):6678–6685. doi: 10.1128/jb.173.21.6678-6685.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diderichsen B., Poulsen G. B., Jørgensen P. L. Cloning and expression of an amylase gene from Bacillus stearothermophilus. Res Microbiol. 1991 Sep-Oct;142(7-8):793–796. doi: 10.1016/0923-2508(91)90057-h. [DOI] [PubMed] [Google Scholar]
  6. Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev. 1993 Mar;57(1):1–33. doi: 10.1128/mr.57.1.1-33.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fort P., Piggot P. J. Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis. J Gen Microbiol. 1984 Aug;130(8):2147–2153. doi: 10.1099/00221287-130-8-2147. [DOI] [PubMed] [Google Scholar]
  8. Honjo M., Nakayama A., Fukazawa K., Kawamura K., Ando K., Hori M., Furutani Y. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J Bacteriol. 1990 Apr;172(4):1783–1790. doi: 10.1128/jb.172.4.1783-1790.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
  10. Kuroda A., Asami Y., Sekiguchi J. Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. J Bacteriol. 1993 Oct;175(19):6260–6268. doi: 10.1128/jb.175.19.6260-6268.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lewis P. J., Partridge S. R., Errington J. Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3849–3853. doi: 10.1073/pnas.91.9.3849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moldover B., Cao L., Piggot P. J. Identification of a control region for expression of the forespore-specific Bacillus subtilis locus spoVA. Microbiology. 1994 Sep;140(Pt 9):2299–2304. doi: 10.1099/13500872-140-9-2299. [DOI] [PubMed] [Google Scholar]
  13. Moldover B., Piggot P. J., Yudkin M. D. Identification of the promoter and the transcriptional start site of the spoVA operon of Bacillus subtilis and Bacillus licheniformis. J Gen Microbiol. 1991 Mar;137(3):527–531. doi: 10.1099/00221287-137-3-527. [DOI] [PubMed] [Google Scholar]
  14. Partridge S. R., Errington J. The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol Microbiol. 1993 May;8(5):945–955. doi: 10.1111/j.1365-2958.1993.tb01639.x. [DOI] [PubMed] [Google Scholar]
  15. Partridge S. R., Foulger D., Errington J. The role of sigma F in prespore-specific transcription in Bacillus subtilis. Mol Microbiol. 1991 Mar;5(3):757–767. doi: 10.1111/j.1365-2958.1991.tb00746.x. [DOI] [PubMed] [Google Scholar]
  16. Priest F. G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev. 1977 Sep;41(3):711–753. doi: 10.1128/br.41.3.711-753.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schuch R., Piggot P. J. The dacF-spoIIA operon of Bacillus subtilis, encoding sigma F, is autoregulated. J Bacteriol. 1994 Jul;176(13):4104–4110. doi: 10.1128/jb.176.13.4104-4110.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sun D. X., Stragier P., Setlow P. Identification of a new sigma-factor involved in compartmentalized gene expression during sporulation of Bacillus subtilis. Genes Dev. 1989 Feb;3(2):141–149. doi: 10.1101/gad.3.2.141. [DOI] [PubMed] [Google Scholar]
  19. Tangney M., Jørgensen P. L., Diderichsen B., Jørgensen S. T. A new method for integration and stable DNA amplification in poorly transformable bacilli. FEMS Microbiol Lett. 1995 Jan 1;125(1):107–114. doi: 10.1111/j.1574-6968.1995.tb07343.x. [DOI] [PubMed] [Google Scholar]
  20. Waites W. M., Kay D., Dawes I. W., Wood D. A., Warren S. C., Mandelstam J. Sporulation in Bacillus subtilis. Correlation of biochemical events with morphological changes in asporogenous mutants. Biochem J. 1970 Jul;118(4):667–676. doi: 10.1042/bj1180667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wong S. L., Wang L. F., Doi R. H. Cloning and nucleotide sequence of senN, a novel 'Bacillus natto' (B. subtilis) gene that regulates expression of extracellular protein genes. J Gen Microbiol. 1988 Dec;134(12):3269–3276. doi: 10.1099/00221287-134-12-3269. [DOI] [PubMed] [Google Scholar]
  22. Yudkin M. D., Appleby L., Smith A. J. Nucleotide sequence of the Bacillus licheniformis homologue of the sporulation locus spoIIA of Bacillus subtilis. J Gen Microbiol. 1989 Apr;135(4):767–775. doi: 10.1099/00221287-135-4-767. [DOI] [PubMed] [Google Scholar]
  23. van Leen R. W., Bakhuis J. G., van Beckhoven R. F., Burger H., Dorssers L. C., Hommes R. W., Lemson P. J., Noordam B., Persoon N. L., Wagemaker G. Production of human interleukin-3 using industrial microorganisms. Biotechnology (N Y) 1991 Jan;9(1):47–52. doi: 10.1038/nbt0191-47. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES