Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Nov;61(11):3843–3848. doi: 10.1128/aem.61.11.3843-3848.1995

Characterization and transcriptional analysis of the gene cluster for coronafacic acid, the polyketide component of the phytotoxin coronatine.

H Liyanage 1, D A Palmer 1, M Ullrich 1, C L Bender 1
PMCID: PMC167688  PMID: 8526495

Abstract

Coronafacic acid (CFA), the polyketide component of the phytotoxin coronatine (COR), is activated and coupled to coronamic acid via amide bond formation, a biosynthetic step presumably catalyzed by the CFA ligase (cfl) gene product. The COR biosynthetic gene cluster in Pseudomonas syringae pv. glycinea PG4180 is located within a 32-kb region of a 90-kb plasmid designated p4180A. In the present study, a cloned region of p4180A complemented all CFA- mutants spanning an 18.8-kb region of the COR biosynthetic cluster. The genetic evidence presented in this study indicates that cfl and the CFA biosynthetic gene cluster are encoded by a single transcript and that transcription of all of the genes in this operon is directed by the cfl promoter. The cfl promoter was localized to a 0.37-kb region upstream of the transcriptional start site by progressive subcloning in pRG960sd, a vector containing a promoterless glucuronidase gene. Transcription of the cfl/CFA operon was temperature sensitive and showed maximal glucuronidase activity at 18 degrees C. Furthermore, transcription of the cfl/CFA operon was dependent on the functional activity of a modified two-component regulatory system located within the COR biosynthetic gene cluster. Thermoregulation of the cfl/CFA operon and the coronamic acid biosynthetic gene cluster via the modified two-component regulatory system is discussed.

Full Text

The Full Text of this article is available as a PDF (270.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender C. L., Cooksey D. A. Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol. 1986 Feb;165(2):534–541. doi: 10.1128/jb.165.2.534-541.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bender C. L., Cooksey D. A. Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol. 1987 Feb;169(2):470–474. doi: 10.1128/jb.169.2.470-474.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bender C. L., Liyanage H., Palmer D., Ullrich M., Young S., Mitchell R. Characterization of the genes controlling the biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid. Gene. 1993 Oct 29;133(1):31–38. doi: 10.1016/0378-1119(93)90221-n. [DOI] [PubMed] [Google Scholar]
  4. Bender C. L., Young S. A., Mitchell R. E. Conservation of Plasmid DNA Sequences in Coronatine-Producing Pathovars of Pseudomonas syringae. Appl Environ Microbiol. 1991 Apr;57(4):993–999. doi: 10.1128/aem.57.4.993-999.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feline T. C., Jones R. B., Mellows G., Phillips L. Pseudomonic acid. Part 2. Biosynthesis of pseudomonic acid A. J Chem Soc Perkin 1. 1977;(3):309–318. [PubMed] [Google Scholar]
  6. Jin S., Song Y. N., Deng W. Y., Gordon M. P., Nester E. W. The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol. 1993 Nov;175(21):6830–6835. doi: 10.1128/jb.175.21.6830-6835.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Katz L., Donadio S. Polyketide synthesis: prospects for hybrid antibiotics. Annu Rev Microbiol. 1993;47:875–912. doi: 10.1146/annurev.mi.47.100193.004303. [DOI] [PubMed] [Google Scholar]
  8. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
  9. Lee H. S., Berger D. K., Kustu S. Activity of purified NIFA, a transcriptional activator of nitrogen fixation genes. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2266–2270. doi: 10.1073/pnas.90.6.2266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Liyanage H., Penfold C., Turner J., Bender C. L. Sequence, expression and transcriptional analysis of the coronafacate ligase-encoding gene required for coronatine biosynthesis by Pseudomonas syringae. Gene. 1995 Feb 3;153(1):17–23. doi: 10.1016/0378-1119(94)00661-b. [DOI] [PubMed] [Google Scholar]
  11. Mekalanos J. J. Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol. 1992 Jan;174(1):1–7. doi: 10.1128/jb.174.1.1-7.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Palmer D. A., Bender C. L. Effects of Environmental and Nutritional Factors on Production of the Polyketide Phytotoxin Coronatine by Pseudomonas syringae pv. Glycinea. Appl Environ Microbiol. 1993 May;59(5):1619–1626. doi: 10.1128/aem.59.5.1619-1626.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Parkinson J. S., Kofoid E. C. Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992;26:71–112. doi: 10.1146/annurev.ge.26.120192.000443. [DOI] [PubMed] [Google Scholar]
  14. Staskawicz B., Dahlbeck D., Keen N., Napoli C. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol. 1987 Dec;169(12):5789–5794. doi: 10.1128/jb.169.12.5789-5794.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ullrich M., Bender C. L. The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases. J Bacteriol. 1994 Dec;176(24):7574–7586. doi: 10.1128/jb.176.24.7574-7586.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ullrich M., Guenzi A. C., Mitchell R. E., Bender C. L. Cloning and expression of genes required for coronamic Acid (2-ethyl-1-aminocyclopropane 1-carboxylic Acid), an intermediate in the biosynthesis of the phytotoxin coronatine. Appl Environ Microbiol. 1994 Aug;60(8):2890–2897. doi: 10.1128/aem.60.8.2890-2897.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ullrich M., Peñaloza-Vázquez A., Bailey A. M., Bender C. L. A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol. 1995 Nov;177(21):6160–6169. doi: 10.1128/jb.177.21.6160-6169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Van den Eede G., Deblaere R., Goethals K., Van Montagu M., Holsters M. Broad host range and promoter selection vectors for bacteria that interact with plants. Mol Plant Microbe Interact. 1992 May-Jun;5(3):228–234. doi: 10.1094/mpmi-5-228. [DOI] [PubMed] [Google Scholar]
  19. Xiao Y., Lu Y., Heu S., Hutcheson S. W. Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J Bacteriol. 1992 Mar;174(6):1734–1741. doi: 10.1128/jb.174.6.1734-1741.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Young S. A., Park S. K., Rodgers C., Mitchell R. E., Bender C. L. Physical and functional characterization of the gene cluster encoding the polyketide phytotoxin coronatine in Pseudomonas syringae pv. glycinea. J Bacteriol. 1992 Mar;174(6):1837–1843. doi: 10.1128/jb.174.6.1837-1843.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES