Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Nov;61(11):3919–3927. doi: 10.1128/aem.61.11.3919-3927.1995

Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol brilliant blue R.

B R Vyas 1, H P Molitoris 1
PMCID: PMC167697  PMID: 8526504

Abstract

During solid-state fermentation of wheat straw, a natural lignocellulosic substrate, the white rot fungus Pleurotus ostreatus produced an extracellular H2O2-requiring Remazol brilliant blue R (RBBR)-decolorizing enzymatic activity along with manganese peroxidase, manganese-independent peroxidase, and phenol oxidase activities. The presence of RBBR was not essential for the production of RBBR-decolorizing enzymatic activity by P. ostreatus, because this activity was also produced in the absence of RBBR. This RBBR-decolorizing enzymatic activity in crude enzyme preparations of 14- and 20-day-old cultures exhibited an apparent Km for RBBR of 31 and 52 microM, respectively. The RBBR-decolorizing enzyme activity was maximal in the pH range 3.5 to 4.0. This activity was independent of manganese, and veratryl alcohol had no influence on it. Manganese peroxidase of P. ostreatus did not decolorize RBBR. This H2O2-dependent RBBR-decolorizing enzymatic activity behaved like an oxygenase possessing a catalytic metal center, perhaps heme, because it was inhibited by Na2S2O5, NaCN, NaN3, and depletion of dissolved oxygen. Na2S2O5 brought an early end to the reaction without interfering with the initial reaction rate of RBBR oxygenase. The activity was also inhibited by cysteine. Concentrations of H2O2 higher than 154 microM were observed to be inhibitory as well. Decolorization of RBBR by P. ostreatus is an oxidative process.

Full Text

The Full Text of this article is available as a PDF (442.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr D. P., Shah M. M., Grover T. A., Aust S. D. Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys. 1992 Nov 1;298(2):480–485. doi: 10.1016/0003-9861(92)90438-3. [DOI] [PubMed] [Google Scholar]
  2. Daniel G., Volc J., Kubatova E. Pyranose Oxidase, a Major Source of H(2)O(2) during Wood Degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol. 1994 Jul;60(7):2524–2532. doi: 10.1128/aem.60.7.2524-2532.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Forney L. J., Reddy C. A., Tien M., Aust S. D. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J Biol Chem. 1982 Oct 10;257(19):11455–11462. [PubMed] [Google Scholar]
  4. Glenn J. K., Akileswaran L., Gold M. H. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys. 1986 Dec;251(2):688–696. doi: 10.1016/0003-9861(86)90378-4. [DOI] [PubMed] [Google Scholar]
  5. Glenn J. K., Gold M. H. Decolorization of Several Polymeric Dyes by the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1983 Jun;45(6):1741–1747. doi: 10.1128/aem.45.6.1741-1747.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gold M. H., Kuwahara M., Chiu A. A., Glenn J. K. Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys. 1984 Nov 1;234(2):353–362. doi: 10.1016/0003-9861(84)90280-7. [DOI] [PubMed] [Google Scholar]
  7. Goszczynski S., Paszczynski A., Pasti-Grigsby M. B., Crawford R. L., Crawford D. L. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol. 1994 Mar;176(5):1339–1347. doi: 10.1128/jb.176.5.1339-1347.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammel K. E., Jensen K. A., Jr, Mozuch M. D., Landucci L. L., Tien M., Pease E. A. Ligninolysis by a purified lignin peroxidase. J Biol Chem. 1993 Jun 15;268(17):12274–12281. [PubMed] [Google Scholar]
  9. Johansson T., Nyman P. O. Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. I. Isolation of enzyme forms and characterization of physical and catalytic properties. Arch Biochem Biophys. 1993 Jan;300(1):49–56. doi: 10.1006/abbi.1993.1007. [DOI] [PubMed] [Google Scholar]
  10. Kerem Z., Friesem D., Hadar Y. Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Apr;58(4):1121–1127. doi: 10.1128/aem.58.4.1121-1127.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kerem Z., Hadar Y. Effect of Manganese on Lignin Degradation by Pleurotus ostreatus during Solid-State Fermentation. Appl Environ Microbiol. 1993 Dec;59(12):4115–4120. doi: 10.1128/aem.59.12.4115-4120.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kersten P. J., Kirk T. K. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987 May;169(5):2195–2201. doi: 10.1128/jb.169.5.2195-2201.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kimura Y., Asada Y., Kuwahara M. Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol. 1990 Jan;32(4):436–442. doi: 10.1007/BF00903779. [DOI] [PubMed] [Google Scholar]
  14. Kishi K., Wariishi H., Marquez L., Dunford H. B., Gold M. H. Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry. 1994 Jul 26;33(29):8694–8701. doi: 10.1021/bi00195a010. [DOI] [PubMed] [Google Scholar]
  15. Kutsuki H., Gold M. H. Generation of hydroxyl radical and its involvement in lignin degradation by Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1982 Nov 30;109(2):320–327. doi: 10.1016/0006-291x(82)91723-5. [DOI] [PubMed] [Google Scholar]
  16. Momohara I., Matsumoto Y., Ishizu A. Involvement of veratryl alcohol and active oxygen species in degradation of a quinone compound by lignin peroxidase. FEBS Lett. 1990 Oct 29;273(1-2):159–162. doi: 10.1016/0014-5793(90)81074-x. [DOI] [PubMed] [Google Scholar]
  17. Ollikka P., Alhonmäki K., Leppänen V. M., Glumoff T., Raijola T., Suominen I. Decolorization of Azo, Triphenyl Methane, Heterocyclic, and Polymeric Dyes by Lignin Peroxidase Isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Dec;59(12):4010–4016. doi: 10.1128/aem.59.12.4010-4016.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orth A. B., Royse D. J., Tien M. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol. 1993 Dec;59(12):4017–4023. doi: 10.1128/aem.59.12.4017-4023.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pasti-Grigsby M. B., Paszczynski A., Goszczynski S., Crawford D. L., Crawford R. L. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Nov;58(11):3605–3613. doi: 10.1128/aem.58.11.3605-3613.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sannia G., Limongi P., Cocca E., Buonocore F., Nitti G., Giardina P. Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. Biochim Biophys Acta. 1991 Jan 23;1073(1):114–119. doi: 10.1016/0304-4165(91)90190-r. [DOI] [PubMed] [Google Scholar]
  21. Smith R. E. Rapid tube test for detecting fungal cellulase production. Appl Environ Microbiol. 1977 Apr;33(4):980–981. doi: 10.1128/aem.33.4.980-981.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spadaro J. T., Gold M. H., Renganathan V. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Aug;58(8):2397–2401. doi: 10.1128/aem.58.8.2397-2401.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spadaro J. T., Renganathan V. Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse Yellow 3 degradation. Arch Biochem Biophys. 1994 Jul;312(1):301–307. doi: 10.1006/abbi.1994.1313. [DOI] [PubMed] [Google Scholar]
  24. Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tonon F., Odier E. Influence of Veratryl Alcohol and Hydrogen Peroxide on Ligninase Activity and Ligninase Production by Phanerochaete chrysosporium. Appl Environ Microbiol. 1988 Feb;54(2):466–472. doi: 10.1128/aem.54.2.466-472.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wariishi H., Akileswaran L., Gold M. H. Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry. 1988 Jul 12;27(14):5365–5370. doi: 10.1021/bi00414a061. [DOI] [PubMed] [Google Scholar]
  27. Wariishi H., Dunford H. B., MacDonald I. D., Gold M. H. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J Biol Chem. 1989 Feb 25;264(6):3335–3340. [PubMed] [Google Scholar]
  28. Wariishi H., Valli K., Gold M. H. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1991 Apr 15;176(1):269–275. doi: 10.1016/0006-291x(91)90919-x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES