Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Nov;61(11):3960–3966. doi: 10.1128/aem.61.11.3960-3966.1995

Genotyping male-specific RNA coliphages by hybridization with oligonucleotide probes.

F C Hsu 1, Y S Shieh 1, J van Duin 1, M J Beekwilder 1, M D Sobsey 1
PMCID: PMC167702  PMID: 8526509

Abstract

F-specific (F+) RNA coliphages are prevalent in sewage and other fecal wastes of humans and animals. There are four antigenically distinct serogroups of F+ RNA coliphages, and those predominating in humans (groups II and III) differ from those predominating in animals (groups I and IV). Hence, it may be possible to distinguish between human and animal wastes by serotyping F+ RNA coliphage isolates. Because serotyping is laborious and requires scarce antiserum reagents, we investigated genotyping using synthetic oligonucleotide probes as an alternative approach to distinguishing the four groups of F+ RNA coliphages. Oligoprobes I, II, III, IV, A, and B were selected to detect group I, II, III, IV, I plus II, and III plus IV phages, respectively. Methods for phage transfer from zones of lysis on a host cell lawn to candidate membrane filters and fixation of genomic nucleic acid on the membranes were optimized. The oligoprobes, which were end labeled with digoxigenin, were applied in DNA-RNA hybridization, and hybrids were observed by colorimetric, immunoenzymatic detection. Of 203 isolates of F+ RNA coliphages from environmental samples of water, wastes, and shellfish, 99.5 and 96.6% could be classified into each group by serotyping and genotyping, respectively. Probes A and B correctly identified 100% of the isolates. On the basis of these results, this method for genotyping F+ RNA coliphages appears to be practical and reliable for typing isolates in field samples.

Full Text

The Full Text of this article is available as a PDF (541.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann H. W., DuBow M. S., Jarvis A. W., Jones L. A., Krylov V. N., Maniloff J., Rocourt J., Safferman R. S., Schneider J., Seldin L. The species concept and its application to tailed phages. Arch Virol. 1992;124(1-2):69–82. doi: 10.1007/BF01314626. [DOI] [PubMed] [Google Scholar]
  2. Adhin M. R., Hirashima A., van Duin J. Nucleotide sequence from the ssRNA bacteriophage JP34 resolves the discrepancy between serological and biophysical classification. Virology. 1989 May;170(1):238–242. doi: 10.1016/0042-6822(89)90371-1. [DOI] [PubMed] [Google Scholar]
  3. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  4. Berman D., Sullivan R., Hurst C. J. Effect of the method of preparing monochloramine upon inactivation of MS2 coliphage, Escherichia coli, and Klebsiella pneumoniae. Can J Microbiol. 1992 Jan;38(1):28–33. doi: 10.1139/m92-004. [DOI] [PubMed] [Google Scholar]
  5. Feng P. Identification of Escherichia coli serotype O157:H7 by DNA probe specific for an allele of uid A gene. Mol Cell Probes. 1993 Apr;7(2):151–154. doi: 10.1006/mcpr.1993.1021. [DOI] [PubMed] [Google Scholar]
  6. Furuse K., Sakurai T., Hirashima A., Katsuki M., Ando A., Watanabe I. Distribution of ribonucleic acid coliphages in south and east Asia. Appl Environ Microbiol. 1978 Jun;35(6):995–1002. doi: 10.1128/aem.35.6.995-1002.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harigai H., Furuse K., Inokuchi Y., Hirashima A. Characterization of an intergroup serological mutant from group II RNA phage GA. Microbiol Immunol. 1986;30(12):1247–1257. doi: 10.1111/j.1348-0421.1986.tb03057.x. [DOI] [PubMed] [Google Scholar]
  8. Havelaar A. H. Bacteriophages as model organisms in water treatment. Microbiol Sci. 1987 Dec;4(12):362–364. [PubMed] [Google Scholar]
  9. Havelaar A. H., Pot-Hogeboom W. M., Furuse K., Pot R., Hormann M. P. F-specific RNA bacteriophages and sensitive host strains in faeces and wastewater of human and animal origin. J Appl Bacteriol. 1990 Jul;69(1):30–37. doi: 10.1111/j.1365-2672.1990.tb02908.x. [DOI] [PubMed] [Google Scholar]
  10. Havelaar A. H., van Olphen M., Drost Y. C. F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh water. Appl Environ Microbiol. 1993 Sep;59(9):2956–2962. doi: 10.1128/aem.59.9.2956-2962.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hedberg C. W., Osterholm M. T. Outbreaks of food-borne and waterborne viral gastroenteritis. Clin Microbiol Rev. 1993 Jul;6(3):199–210. doi: 10.1128/cmr.6.3.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hussein H. A., Parwani A. V., Rosen B. I., Lucchelli A., Saif L. J. Detection of rotavirus serotypes G1, G2, G3, and G11 in feces of diarrheic calves by using polymerase chain reaction-derived cDNA probes. J Clin Microbiol. 1993 Sep;31(9):2491–2496. doi: 10.1128/jcm.31.9.2491-2496.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inokuchi Y., Hirashima A., Watanabe I. Comparison of the nucleotide sequences at the 3'-terminal region of RNAs from RNA coliphages. J Mol Biol. 1982 Jul 15;158(4):711–730. doi: 10.1016/0022-2836(82)90256-x. [DOI] [PubMed] [Google Scholar]
  14. Kafatos F. C., Jones C. W., Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 1979 Nov 24;7(6):1541–1552. doi: 10.1093/nar/7.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Le Guyader F., Apaire-Marchais V., Brillet J., Billaudel S. Use of genomic probes to detect hepatitis A virus and enterovirus RNAs in wild shellfish and relationship of viral contamination to bacterial contamination. Appl Environ Microbiol. 1993 Nov;59(11):3963–3968. doi: 10.1128/aem.59.11.3963-3968.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matsumoto T., Yamada O., Itagaki A., Ishida S., Kamahora T., Kurimura T. Rapid DNA diagnosis of herpes simplex virus serotypes. J Virol Methods. 1992 Oct;40(1):119–125. doi: 10.1016/0166-0934(92)90013-4. [DOI] [PubMed] [Google Scholar]
  17. Moore A. C., Herwaldt B. L., Craun G. F., Calderon R. L., Highsmith A. K., Juranek D. D. Surveillance for waterborne disease outbreaks--United States, 1991-1992. MMWR CDC Surveill Summ. 1993 Nov 19;42(5):1–22. [PubMed] [Google Scholar]
  18. Osawa S., Furuse K., Watanabe I. Distribution of ribonucleic acid coliphages in animals. Appl Environ Microbiol. 1981 Jan;41(1):164–168. doi: 10.1128/aem.41.1.164-168.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scotland S. M., Willshaw G. A., Smith H. R., Said B., Stokes N., Rowe B. Virulence properties of Escherichia coli strains belonging to serogroups O26, O55, O111 and O128 isolated in the United Kingdom in 1991 from patients with diarrhoea. Epidemiol Infect. 1993 Dec;111(3):429–438. doi: 10.1017/s0950268800057150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sethabutr O., Hanchalay S., Lexomboon U., Bishop R. F., Holmes I. H., Echeverria P. Typing of human group A rotavirus with alkaline phosphatase-labeled oligonucleotide probes. J Med Virol. 1992 Jul;37(3):192–196. doi: 10.1002/jmv.1890370308. [DOI] [PubMed] [Google Scholar]
  21. Stuyver L., Rossau R., Wyseur A., Duhamel M., Vanderborght B., Van Heuverswyn H., Maertens G. Typing of hepatitis C virus isolates and characterization of new subtypes using a line probe assay. J Gen Virol. 1993 Jun;74(Pt 6):1093–1102. doi: 10.1099/0022-1317-74-6-1093. [DOI] [PubMed] [Google Scholar]
  22. Thomas A., Smith H. R., Rowe B. Use of digoxigenin-labelled oligonucleotide DNA probes for VT2 and VT2 human variant genes to differentiate Vero cytotoxin-producing Escherichia coli strains of serogroup O157. J Clin Microbiol. 1993 Jul;31(7):1700–1703. doi: 10.1128/jcm.31.7.1700-1703.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES