Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Nov;61(11):3967–3971. doi: 10.1128/aem.61.11.3967-3971.1995

Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions.

C Platteeuw 1, J Hugenholtz 1, M Starrenburg 1, I van Alen-Boerrigter 1, W M de Vos 1
PMCID: PMC167703  PMID: 8526510

Abstract

The als gene for alpha-acetolactate synthase of Lactococcus lactis MG1363 was cloned on a multicopy plasmid under the control of the inducible L. lactis lacA promoter. More than a hundredfold overproduction of alpha-acetolactate synthase was obtained in L. lactis under inducing conditions as compared with that of the host strain, which contained a single chromosomal copy of the als gene. The effect of alpha-acetolactate synthase overproduction on the formation of end products in various L. lactis strains was studied under different fermentation conditions. Under aerobic conditions and with an initial pH of 6.0, overexpression of the als gene resulted in significant acetoin production that amounted to more than one-third of the pyruvate converted. However, the effect of the alpha-acetolactate synthase overproduction was even more pronounced in the lactate dehydrogenase-deficient strain L. lactis NZ2700. Anaerobic cultivation of this strain resulted in a doubling of the butanediol formation of up to 40% of the converted pyruvate. When cultivated aerobically at an initial pH of 6.8, overexpression of the als gene in L. lactis NZ2700 resulted in the conversion of more than 60% of the pyruvate into acetoin, while no butanediol was formed. Moreover, at an initial pH of 6.0, similar amounts of acetoin were obtained, but in addition approximately 20% of the pyruvate was converted into butanediol. These metabolic engineering studies indicate that more than 80% of the lactose can be converted via the activity of the overproduced alpha-acetolactate synthase in L. lactis.

Full Text

The Full Text of this article is available as a PDF (212.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbe K., Takahashi S., Yamada T. Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions. J Bacteriol. 1982 Oct;152(1):175–182. doi: 10.1128/jb.152.1.175-182.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassit N., Boquien C. Y., Picque D., Corrieu G. Effect of Initial Oxygen Concentration on Diacetyl and Acetoin Production by Lactococcus lactis subsp. lactis biovar diacetylactis. Appl Environ Microbiol. 1993 Jun;59(6):1893–1897. doi: 10.1128/aem.59.6.1893-1897.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  5. Gasson M. J. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol. 1983 Apr;154(1):1–9. doi: 10.1128/jb.154.1.1-9.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goelling D., Stahl U. Cloning and expression of an alpha-acetolactate decarboxylase gene from Streptococcus lactis subsp. diacetylactis in Escherichia coli. Appl Environ Microbiol. 1988 Jul;54(7):1889–1891. doi: 10.1128/aem.54.7.1889-1891.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hill C., Venema G., Daly C., Fitzgerald G. F. Cloning and characterization of the tetracycline resistance determinant of and several promoters from within the conjugative transposon Tn919. Appl Environ Microbiol. 1988 May;54(5):1230–1236. doi: 10.1128/aem.54.5.1230-1236.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hillier A. J., Jago G. R. L-Lactate dehydrogenase, FDP-activated, from Streptococcus cremoris. Methods Enzymol. 1982;89(Pt 500):362–367. doi: 10.1016/s0076-6879(82)89065-4. [DOI] [PubMed] [Google Scholar]
  9. Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983 Sep;49(3):209–224. doi: 10.1007/BF00399499. [DOI] [PubMed] [Google Scholar]
  10. Leenhouts K. J., Kok J., Venema G. Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1989 Feb;55(2):394–400. doi: 10.1128/aem.55.2.394-400.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marugg J. D., Goelling D., Stahl U., Ledeboer A. M., Toonen M. Y., Verhue W. M., Verrips C. T. Identification and characterization of the alpha-acetolactate synthase gene from Lactococcus lactis subsp. lactis biovar diacetylactis. Appl Environ Microbiol. 1994 Apr;60(4):1390–1394. doi: 10.1128/aem.60.4.1390-1394.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Phalip V., Monnet C., Schmitt P., Renault P., Godon J. J., Diviès C. Purification and properties of the alpha-acetolactate decarboxylase from Lactococcus lactis subsp. lactis NCDO 2118. FEBS Lett. 1994 Aug 29;351(1):95–99. doi: 10.1016/0014-5793(94)00820-5. [DOI] [PubMed] [Google Scholar]
  13. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  14. Snoep J. L., Teixeira de Mattos M. J., Starrenburg M. J., Hugenholtz J. Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol. 1992 Jul;174(14):4838–4841. doi: 10.1128/jb.174.14.4838-4841.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Starrenburg M. J., Hugenholtz J. Citrate Fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol. 1991 Dec;57(12):3535–3540. doi: 10.1128/aem.57.12.3535-3540.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Verhue W. M., Tjan F. S. Study of the Citrate Metabolism of Lactococcus lactis subsp. lactis Biovar Diacetylactis by Means of C Nuclear Magnetic Resonance. Appl Environ Microbiol. 1991 Nov;57(11):3371–3377. doi: 10.1128/aem.57.11.3371-3377.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vos P., van Asseldonk M., van Jeveren F., Siezen R., Simons G., de Vos W. M. A maturation protein is essential for production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope. J Bacteriol. 1989 May;171(5):2795–2802. doi: 10.1128/jb.171.5.2795-2802.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wells J. M., Wilson P. W., Le Page R. W. Improved cloning vectors and transformation procedure for Lactococcus lactis. J Appl Bacteriol. 1993 Jun;74(6):629–636. doi: 10.1111/j.1365-2672.1993.tb05195.x. [DOI] [PubMed] [Google Scholar]
  20. van Rooijen R. J., Gasson M. J., de Vos W. M. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol. 1992 Apr;174(7):2273–2280. doi: 10.1128/jb.174.7.2273-2280.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES