Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Nov;61(11):4074–4082. doi: 10.1128/aem.61.11.4074-4082.1995

In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities.

R E Hodson 1, W A Dustman 1, R P Garg 1, M A Moran 1
PMCID: PMC167714  PMID: 8526521

Abstract

Obtaining information on the genetic capabilities and phylogenetic affinities of individual prokaryotic cells within natural communities is a high priority in the fields of microbial ecology, microbial biogeochemistry, and applied microbiology, among others. A method for prokaryotic in situ PCR (PI-PCR), a technique which will allow single cells within complex mixtures to be identified and characterized genetically, is presented here. The method involves amplification of specific nuclei acid sequences inside intact prokaryotic cells followed by color or fluorescence detection of the localized PCR product via bright-field or epifluorescence microscopy. Prokaryotic DNA and mRNA were both used successfully as targets for PI-PCR. We demonstrate the use of PI-PCR to identify nahA-positive cells in mixtures of bacterial isolates and in model marine bacterial communities.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Azam F., Hodson R. E. Dissolved ATP in the sea and its utilisation by marine bacteria. Nature. 1977 Jun 23;267(5613):696–698. doi: 10.1038/267696a0. [DOI] [PubMed] [Google Scholar]
  4. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
  5. Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. doi: 10.1073/pnas.77.12.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuhrman J. A., Azam F. Bacterioplankton secondary production estimates for coastal waters of british columbia, antarctica, and california. Appl Environ Microbiol. 1980 Jun;39(6):1085–1095. doi: 10.1128/aem.39.6.1085-1095.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gressens P., Martin J. R. In situ polymerase chain reaction: localization of HSV-2 DNA sequences in infections of the nervous system. J Virol Methods. 1994 Jan;46(1):61–83. doi: 10.1016/0166-0934(94)90017-5. [DOI] [PubMed] [Google Scholar]
  8. Hahn D., Amann R. I., Ludwig W., Akkermans A. D., Schleifer K. H. Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol. 1992 May;138(5):879–887. doi: 10.1099/00221287-138-5-879. [DOI] [PubMed] [Google Scholar]
  9. Hicks R. E., Amann R. I., Stahl D. A. Dual staining of natural bacterioplankton with 4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol. 1992 Jul;58(7):2158–2163. doi: 10.1128/aem.58.7.2158-2163.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kirchman D., K'nees E., Hodson R. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol. 1985 Mar;49(3):599–607. doi: 10.1128/aem.49.3.599-607.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Komminoth P., Long A. A. In-situ polymerase chain reaction. An overview of methods, applications and limitations of a new molecular technique. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;64(2):67–73. [PubMed] [Google Scholar]
  13. Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H., Stenström T. A. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol. 1993 Jul;59(7):2293–2298. doi: 10.1128/aem.59.7.2293-2298.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moss R. B., Kaliner M. A. Primed in situ DNA amplification (PIDA). J Clin Lab Anal. 1994;8(2):120–122. doi: 10.1002/jcla.1860080211. [DOI] [PubMed] [Google Scholar]
  15. Nuovo G. J., Gallery F., MacConnell P. Detection of amplified HPV 6 and 11 DNA in vulvar lesions by hot start PCR in situ hybridization. Mod Pathol. 1992 Jul;5(4):444–448. [PubMed] [Google Scholar]
  16. Sayler G. S., Layton A. C. Environmental application of nucleic acid hybridization. Annu Rev Microbiol. 1990;44:625–648. doi: 10.1146/annurev.mi.44.100190.003205. [DOI] [PubMed] [Google Scholar]
  17. Schell M. A. Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product. Gene. 1985;36(3):301–309. doi: 10.1016/0378-1119(85)90185-4. [DOI] [PubMed] [Google Scholar]
  18. Seidman R., Peress N. S., Nuovo G. J. In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids in skeletal muscle in patients with myopathy. Mod Pathol. 1994 Apr;7(3):369–375. [PubMed] [Google Scholar]
  19. Sobecky P. A., Schell M. A., Moran M. A., Hodson R. E. Adaptation of model genetically engineered microorganisms to lake water: growth rate enhancements and plasmid loss. Appl Environ Microbiol. 1992 Nov;58(11):3630–3637. doi: 10.1128/aem.58.11.3630-3637.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sällström J. F., Zehbe I., Alemi M., Wilander E. Pitfalls of in situ polymerase chain reaction (PCR) using direct incorporation of labelled nucleotides. Anticancer Res. 1993 Jul-Aug;13(4):1153–1153. [PubMed] [Google Scholar]
  21. Trebesius K., Amann R., Ludwig W., Mühlegger K., Schleifer K. H. Identification of Whole Fixed Bacterial Cells with Nonradioactive 23S rRNA-Targeted Polynucleotide Probes. Appl Environ Microbiol. 1994 Sep;60(9):3228–3235. doi: 10.1128/aem.60.9.3228-3235.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zarda B., Amann R., Wallner G., Schleifer K. H. Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides. J Gen Microbiol. 1991 Dec;137(12):2823–2830. doi: 10.1099/00221287-137-12-2823. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES